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Abstract

The circular restricted three-body problem (CR3BP) is a simplified dynamical model

for a satellite under the gravitational influence of both the Earth and the Moon, main-

taining closer fidelity to the gravitational environment experienced by a high-altitude

Earth-orbiting spacecraft than modeling in the Earth-satellite two-body problem.

Resonant orbit arcs are used to determine an initial guess to input into an algorithm

that computes a trajectory solution with specific design requirements and constraints.

A test case uses this method to compute a lunar “fly-by” transfer solution requiring

less Δ𝑉 than two-body transfer methods and offers an unusual pathway that adds

an “unpredictability” element to the design. Multiple-shooting and pseudo-arclength

continuation methods are used to target trajectories and compute periodic orbits in

the CR3BP to within a satisfactory tolerance. Invariant manifolds associated with an

unstable periodic orbit around a libration point in the Earth-Moon system are used

as unpredictable transfer pathways when traveling from one Earth orbit to another,

utilizing a map-based design process. Periapsis Poincaré maps are also constructed to

characterize the observed behaviors of orbits in the Earth-Moon system for a specified

time, demonstrating utility for both designing trajectories with desired end charac-

teristics and predicting an unknown spacecraft’s future behavior. This investigation

uses numerical methods and Dynamical Systems Theory concepts that are typically

showcased for missions traveling beyond Earth orbits and the Earth-Moon system,

and these tools are successfully applied to missions between Earth orbits. All trans-

fers are successfully designed to require similar or less Δ𝑉 than traditional methods

and to offer unpredictable pathways for military utility. In addition to showcasing

modern tools for Earth-centric missions, examining problems in a rotating frame and
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representing information with Poincaré maps is shown to give valuable visual insight

for mission planners. Using a map-based method is also found to present a vast

collection of transfer opportunities for mission design.
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“Ad infinitum et ultra.”

Bombus Lux-Anno
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48 Periapsis Poincaré Map, 𝐽𝐶 = 2.95, 36 Trajectories
Numerically Integrated for 155 Revolutions of the
Primaries (About 11.5 Years), Cyan=Trajectories
Departing 𝐿1 “Gateway,” Green=Trajectories
“Bounded” for Integration Time, Blue=Trajectories
that Impact Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

49 Zoomed View of Periapsis Poincaré Map, 𝐽𝐶 = 2.95, 36
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MILITARY APPLICATIONS OF HIGH-ALTITUDE SATELLITE ORBITS IN A

MULTI-BODY DYNAMICAL ENVIRONMENT USING NUMERICAL

METHODS AND DYNAMICAL SYSTEMS THEORY

1. Introduction

1.1 Overview

Considering orbital transfers, a multi-body dynamical environment, modern nu-

merical algorithms, and unconventional design methods are essential to exploring

transfer options with reduced fuel expenditure (Δ𝑉 ) and favorable, more unpre-

dictable trajectory pathways.

The first chapter in the current investigation lays the groundwork for three specific

orbital mission design test cases examining unconventional, high-altitude pathways

as a means for transferring from one Earth orbit to another. The first case uses a

resonant orbit arc to generate an initial guess for a targeting algorithm that computes

a transfer between a highly inclined geosynchronous transfer orbit and a geostationary

orbit for less cost (less Δ𝑉 ) than standard transfer methods. The second case exploits

concepts from Dynamical Systems Theory, using visual insight gained from a periapsis

Poincaré map to design a transfer between orbits in the Earth-Moon plane. The third

test case inspects periapsis Poincaré maps to obtain visual information about the

future whereabouts of a spacecraft, aiding in both orbit design and in the prediction

of an unknown spacecraft’s behavior.

In the following first chapter, a discussion of expanding the available design space

is presented, emphasizing the possibility of low-Δ𝑉 , innovative design options deter-
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mined by modeling in a multi-body environment, using a variety of numerical tools,

and utilizing concepts from Dynamical Systems Theory. An example of a successful

real-world scenario is described, motivating the present investigation by exhibiting

how using the gravity of the Moon (with two lunar “fly-bys”) led to a transfer be-

tween two Earth orbits and required less Δ𝑉 than standard methods. The military

applicability of the tools, procedures, and test cases used in the present investigation

is also offered, examining the goals and objectives listed in Department of Defense

literature. Finally, a definitive problem statement is listed, specific terminology is

defined, and an outline of the remaining chapters is given.

1.2 Expanding Design Options

Every day, new scientific discoveries and technological advancements in space sys-

tems increase capabilities and potential for progress in space exploration. With the

launches of Sputnik I in October 1957 and Explorer I in January 1958 and the subse-

quent “Space Race” that ensued between the Soviet Union and United States, there

has been a military presence in space, aiming to take advantage of the “ultimate high

ground” [2]. Space operations are now a regular military priority, and space mission

design—designing the trajectories used to get a spacecraft from one point to another,

or a combination thereof—is a vital part of each program. The mission design process

is not unlike other military problem solving strategies in that there is a protocol to

follow. The Air Force Smart Operations for the 21st Century (AFSO21) program

applies to all problem solving associated with the Air Force mission and provides the

framework for the 8-Step Problem Solving Model. All steps in the model fall under

the categories: “Observe,” “Orient,” “Decide,” and “Act” (also known as Col John

Boyd’s OODA Loop [3]) [4]. The fifth step in the process, “develop countermeasures,”

is found under “Decide” [4]. This is the step that can bring military mission design to
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the next level. The 927th Air Refueling Wing at MacDill Air Force Base gives further

guidance on the importance of the fifth step: “Pilots examine all the possibilities for

counter measures so they can head the problem off at the pass before it affects their

mission...Lay out all of your options so you can examine the possibilities before de-

ciding which one would be best to get you where you want to go” [5]. Applying this

model to spaceflight dynamics, a mission designer must fully understand the problem

and explore all possibilities for solutions. Simplified information and mission design

capability limitations can restrain problem-solvers when it comes to orbital dynamics.

Victor G. Szebehely, a remarkable theorist of celestial mechanics, agreed with these

thoughts. He began his first book by stating: “The purpose of dynamics is to char-

acterize the totality of possible motions of a given dynamical system” [1]. The U.S.

military can benefit from a wider understanding of modern methods in astrodynamics

that expand the design space options.

Once in Earth orbit, conventional methods for impulsive maneuvers of a spacecraft

are generally both expensive and follow predictable trajectory pathways. However,

there are alternative, innovative methods that can be used to transfer a spacecraft

from one point to another for simliar or potentially less Δ𝑉 and with less predictable

pathways that may be advantageous for military missions. Some spacecraft trajec-

tories in the design problems presented in this investigation may travel to extremely

high altitudes, making it necessary to use a higher-fidelity system model that consid-

ers gravitational effects beyond what is reflected in analysis of a simple Earth-satellite

(two-body) environment. Tools for this type of design have been developed by looking

at the motion of, and nearby, different orbits by the means of Dynamical Systems

Theory (DST). The main applications of DST are based on the notion of using invari-

ant manifold structures associated with unstable periodic orbits as low-cost (low-Δ𝑉 )

transfer options. Manifolds are examined in the present investigation to transfer from
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one potential military mission orbit to another near-Earth orbit. Strategies also in-

clude numerical methods such as implementing numerical integration and generating

Poincaré maps, exploiting what is known about the equations of motion for the sys-

tem and displaying available solutions. The present investigation examines multiple

scenarios involving spacecraft traveling from one Earth orbit to another in a multi-

body environment, as well as characterizing the potential motions in the vicinity of

the Earth, basing design on DST strategies and numerical tools.

1.3 Motivation from the AsiaSat-3/HGS-1 “Rescue” Mission

Innovative spaceflight projects have emerged in the space community that draw

upon the mission design tools based in a multi-body dynamical model, offering a com-

parison to those projects designed with the standard orbital model involving solely

the Earth and a near-Earth satellite. The “rescue” story of AsiaSat-3/HGS-1 offers

an inspiring account of how using the gravity of the Moon assisted in placing the

satellite in a favorable Earth orbit after a rocket malfunction left it in a highly in-

clined, highly eccentric, and ultimately unusable orbit. The Hughes Global Services 1

spacecraft HGS-1 (originally AsiaSat-3, as it was built and launched for Asia Satellite

Communications Ltd. by Hughes Spacecraft Company) had a fourth stage rocket that

was supposed to perform a combined plane change and circularization burn from the

spacecraft’s geosynchronous transfer orbit. Unfortunately, the satellite was left in an

unusable orbit when the Proton rocket failed to execute the maneuver properly, and

mission failure was declared at this point [6]. The total Δ𝑉 to perform a combined

plane change maneuver at apogee was calculated to be 2.42 km/sec. There was not

enough propellant on board for such a maneuver, and the best possible orbit produced

with the available fuel via conventional trajectory methods was a 16∘ inclined orbit

with unfavorable right ascension of the ascending node, and even then, there would
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not be enough fuel left for the necessary stationkeeping [6].

Representatives from Innovative Orbital Design and Microcosm Inc and the Hughes

Spacecraft Company Senior Orbital Analyst proposed a “rescue” plan. They wanted

to execute an injection maneuver to place the satellite in an orbit that would send it

beyond 1.5 million km from the Earth to then travel around the Moon and perform

a circularization maneuver as it came back with zero inclination [6]. The nominal

transfer time was eight days, and the Δ𝑉 required was within the spacecraft’s capa-

bility at just 1.815 km/sec [6]. Further studies also showed that a second lunar fly-by

would lead to a more favorable, lower initial inclination in the final geosynchronous or-

bit. Advantages of the lunar fly-by option over standard trajectory methods included

shorter trip time, near continuous communication, and lower overall Δ𝑉 cost. The

“rescue” mission was declared a success after two lunar fly-bys, achieving a final in-

clination of 8∘ and favorable ascending node that decreased inclination to the desired

0∘ over the next several years [6]. The “rescue” mission designed using a multi-body

model was not only a successful mission accomplished, but it was groundbreaking in

that the design used an unconventional pathway to complete the same task as a com-

bined plane change and circularization maneuver to end up in the final geostationary

orbit, but for much less Δ𝑉 . This example shows how searching for a solution in an

expanded design space may lead to valuable transfer options. A similar example is

developed and compared to this mission in Section 4.1, using a design method that

utilizes resonant arcs. This “rescue” mission is one of many possible examples where

the Moon’s dynamics can be used for Earth-centered orbital operations with favorable

Δ𝑉 values. The following section describes how using the tools and examining the

type of scenarios presented in this investigation align with specific military objectives.
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1.4 Military Relevance of High-Altitude Missions and Modeling in a

Multi-Body Environment

The National Research Council’s Continuing Kepler’s Quest: Assessing Air Force

Space Command’s Astrodynamics Standards explains that satellite systems sometimes

experience unpredictable or chaotic behavior, which is expected in nonlinear systems

and is reflected in the solutions of the multi-body equations of motion. Given as

examples are satellite systems in orbits starting in standard conditions that “expe-

rience dissimilar dynamical futures,” with diverging predicted and actual orbits, or

systems with unexpected variance when predicting collisions [7]. Chaotic behaviors

are also seen in satellite systems, and as the distance between the Earth’s surface

and a spacecraft increases, the more apparent these dynamical behaviors become.

Showing spacecraft motion with a two-body model leads to a basic understanding of

near-Earth behavior and usually provides a decent fit for the exhibited motion, at

least as a reference solution. Additionally, there are Earth’s oblateness effects, air

drag, as well as other small perturbations to consider to formulate a better model;

however, as a spacecraft travels farther from the Earth, starting near geosynchronous

orbit altitudes, lunar and solar perturbations become the dominant perturbations on

the spacecraft’s motion. While its motion near these altitudes may still be modeled

with lunar and solar gravitational influences as small perturbations on two-body mo-

tion, as the spacecraft moves even further out, its dynamics change drastically, and

the gravitational effects of other bodies in the solar system may no longer be modeled

as mere perturbations on two-body motion. The two-body model trajectories are no

longer sufficient, even as reference solutions. Not only would the motion at higher

altitudes not fit well with the two-body model, but the motion actually exhibited

may be completely unpredictable if chaos is present [8]. At this point, a transition

to a higher-fidelity model is necessary. The circular restricted three-body problem
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(CR3BP) introduces a third body into the model, and the resulting dynamics are

a more accurate representation of the possible motion for these missions than the

standard two-body problem. Unlike the two-body problem (2BP), the CR3BP does

not have a known closed-form analytical solution; therefore, alternative methods are

explored to better suit the nonlinear dynamics [8]. Justifications for using the CR3BP

to expand the design options and implementing numerical tools and DST concepts

are documented in the following military literature.

In addition to its correspondence with the OODA/AFSO21 Model, the modern

methods for orbital mission design presented in this investigation are supported by the

United States Joint Chiefs of Staff Joint Publication 3-14: Space Operations (JP3-14)

and the United States Air Force Chief Scientist Report Technology Horizons [9, 10].

To support the U.S. military’s joint goals of space operations, expanding the design

space with a multi-body dynamical environment and applying the methods explored

in this investigation directly relate to the contributions detailed in Chapter II of JP3-

14, entitled Space Mission Areas [9]. Specifically applicable are the functional capa-

bilities listed under Section B: Space Force Enhancement, particularly environmental

monitoring, and in Section C: Space Support, markedly under satellite operations and

maneuvering.

Operating in a higher-altitude environment and choosing trajectories that visit

other bodies and locations in the Earth-Moon and Sun-Earth systems allow extensive

and unique opportunities for environmental monitoring as mentioned in Section B of

JP3−14 [9]. Just a few areas include monitoring and sampling of the near-Earth space

environment and magnetosphere, the Earth environment’s interaction with the solar

wind, the solar wind in the outer space environment, and regions near celestial bodies

like the Sun, Moon, and Earth. Satellite operations and maneuvering as described

in Section C are supported by this investigation as the opportunity is explored for
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lower-Δ𝑉 transfers from one point in the solar system to another (as demonstrated

by the AsiaSat-3/HGS-1 mission), theoretically “free” (zero-Δ𝑉 ) transfers or other

advantageous maneuvers between trajectories on invariant manifolds, and opportu-

nities for small burns along a spacecraft trajectory that may result in a completely

different orbit than the original due to chaotic behavior [9].

Traveling to and around different locations in the Earth-Moon and other sys-

tems may also increase capability for systems designed for space weather monitoring,

orbital environment characterization, complex environment visualization, and many

others, all of which are listed as Key Technology Areas (KTAs) under Potential Ca-

pability Area (PCA) 30: Improved Orbital Conjunction Prediction, which will enable

technology-derived capabilities that can respond to the strategic, budget, and technol-

ogy environments. According to the document, each KTA is an “essential component

of the science and technology that the Air Force will need for the strategic environ-

ment, enduring realities, and over-arching themes that define the 2010-30 time frame

and beyond” [10]. A variety of significant missions can utilize the different trajectories

and behaviors possible in a higher-fidelity, multi-body dynamical model.

Other potential applications of the tools in the present investigation include mis-

sions that start in the near-Earth environment and travel outward to high-altitude

Earth orbits; the Moon; and libration points of the Earth-Moon and Sun-Earth sys-

tems, as well as stable and unstable periodic orbits around them. Achieving success-

ful operations through and at these locations in the tactical environment may the-

oretically include missions for various reconnaissance, surveillance, navigation, and

command, control, and communication functions. Missions that travel in irregular

patterns and require only slight maneuvers to drastically change the shape of a trajec-

tory can also serve as a useful platform for missions desiring decreased predictability.

An orbit modeled in the CR3BP may initially appear as a typical 2BP orbit in the
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inertial frame as it begins its path along a trajectory. However, integrating the tra-

jectory further and looking in a different frame of reference may reveal completely

different behavior than expected or specific structures that indicate different behav-

iors. Furthermore, missions in the CR3BP that use the gravity of the Moon, visit

different locations in the Earth-Moon system, or have specific, regular patterns and

shapes seen in the CR3BP’s rotating frame may seem unremarkable when seen in

the inertial frame. The potential unpredictability of the example orbits in this study

will be discussed further in the later sections when comparing trajectories in different

frames of reference.

1.5 Thesis Problem Statement and Document Overview

As discussed, the 2BP no longer provides a decent dynamical model to provide a

reference solution as a spacecraft travels beyond geosynchronous orbit altitudes and

the lunar gravitational field cannot be modeled as a small perturbation on two-body

motion. Innovative methods can be applied to Earth-Moon dynamics to aid in mis-

sion design. As described by Continuing Kepler’s Quest : “The connections between

the abstract theory of dynamical systems and practical and applied spaceflight have

yielded an expansive growth in the ability to design (previously undiscovered) efficient

and practical transfers within a highly perturbed, multi-body environment” [7]. In

this investigation, different characteristics of and the specific findings in the CR3BP

are exploited to design mission scenarios with alternative methods to conventional

2BP procedures.

1.5.1 Problem Statement

The objective of this investigation is to showcase a variety of numerical tools

and concepts from Dynamical Systems Theory in a multi-body environment to show
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how unconventional, innovative mission design solutions can provide ways to transfer

spacecraft between Earth-centered orbits. This investigation aims to find solutions

that require similar or less Δ𝑉 when compared to standard methods, provide un-

predictable pathways through the Earth-Moon system that may be advantageous

to military operations, and offer visual insight into the possible motions for design

problems.

1.5.2 Thesis Overview

This thesis is organized into chapters that provide the background information and

design methodology that ultimately lead to the setup, design, and analysis of three

specific orbital mission test cases. For all intensive computations and algorithms,

MATLAB R○ was used to produce numerical solutions and to generate Poincaré maps.

The following overview details this organization and defines key terms and assump-

tions particular to this investigation.

∙ Chapter 2: A historical overview of the contributions to the field of astrodynamics is

provided, as well as a description for numerical integration, general and special

perturbations, DST, Poincaré maps, and resonant orbits. Also explained in

this chapter are the simplifying assumptions for the CR3BP, derivation of the

2BP and CR3BP equations of motion, nondimensionalization of units definition,

transformations to/from the barycentric rotating and Earth-centered inertial

frames of the CR3BP, and description of the one known integral of the motion

admitted by the CR3BP and its implications. The specific features seen in the

rotating frame of the CR3BP are described as well, including the equilibrium

solutions and the motion near them, specific symmetry properties, the State

Transition Matrix used for numerical tasks, and periodic orbits. In this chapter,

mathematical descriptions of both the 2BP and CR3BP are given, and both refer
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to an expression labeled “𝜇.” In the 2BP, the gravitational parameter, 𝜇, refers

to the total mass of the system multiplied by the gravitational constant. In

the CR3BP, the mass ratio, 𝜇, refers to a specifically defined ratio of the mass

of the smaller primary body to the total system mass. Further explanation of

these definitions are found in Chapter 2, but the difference is mentioned here

for clarification. Also notice that the geocentric equatorial inertial reference

frame defined in the context of the 2BP and orbital elements is different than

the Earth-centered inertial frame of the CR3BP defined later in this chapter.

Both are inertial frames defined at the center of the Earth, with the geocentric

equatorial inertial frame defined in relation to the Earth’s equator and the stars,

and the Earth-centered inertial frame of the CR3BP based on the Moon’s orbit

about the Earth and a direction in inertial space based on the initial position

of the Moon at some epoch.

∙ Chapter 3: A description of the various numerical tools employed to aid in overall

mission design, including periapsis Poincaré maps, single- and multiple-shooting

targeting algorithms, and single-parameter and pseudo-arclength continuation

procedures are derived and explained relative to the context of this investi-

gation. Poincaré maps, multiple-shooting, and pseudo-arclength continuation

algorithms are constructed specifically to track and record periapses on trajec-

tories to connect the tools and produce a simple overall design method. In this

chapter, a “periapse” is defined in both the 2BP and the CR3BP; there is a

distinction between the definitions, so unless otherwise noted, a “periapse” in

this investigation refers to the CR3BP definition.

∙ Chapter 4: Three test cases are explained to showcase the design methods. None

of the converged solutions found in this investigation are claimed to be op-

timal, but they do provide possible solutions and offer favorable Δ𝑉 values.
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Taking advantage of the natural change in orbital parameters, a high-altitude

resonant orbit arc is used in Test Case I as an initial guess in designing a

high-altitude transfer from a highly inclined geosynchronous transfer orbit to a

zero-inclination geostationary orbit (GEO). The transfer design is compared to

the AsiaSat-3/HGS-1 “nominal trajectory” as defined by the Hughes Spacecraft

Company’s Chief Technologist at that time, Cesar Ocampo.

In Test Case II, a periapsis Poincaré map is utilized to plan transfer oppor-

tunities between Earth orbits using invariant manifold trajectories associated

with unstable periodic orbits. The initial “Tundra” and final “GEO” orbits

in Test Case II, as well as the transfer trajectories between them, are all in

the plane of the Earth and Moon. The chosen initial orbit is referred to as a

“Tundra” orbit solely because it shares the apogee and perigee altitudes of a

typical Tundra orbit, which in the real world is actually inclined at 63.4∘ with

respect to the Earth’s equatorial plane [11]. The characteristics shared with the

“Tundra” orbit in Test Case II include the altitude information and having an

orbital period equal to one sidereal day. The “GEO” orbit in Test Case II is

referred to as such since it is a circular orbit near GEO altitude, but since this

final orbit lies in the plane of the Earth and Moon, its inclination with respect

to the Earth’s equatorial plane is not zero, as it would be for geostationary orbit

(like in Test Case I). Due to the nature of the design process chosen, the final

“GEO” altitude is also slightly smaller than actual geostationary altitude. The

relevance of these orbits as initial and final mission orbits is discussed in the

test case, but the reference to “Tundra” and “GEO” orbits are defined here for

clarity.

In Test Case III, orbits are also observed in the Earth interior region of

the Earth-Moon CR3BP on periapsis Poincaré maps as a method for predicting
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the behavior of a trajectory based on its periapse locations. A discussion is

presented that uses the classification of trajectory behavior at some later time

from a map to easily foresee where an unknown spacecraft may be or may end

up depending on its initial or current conditions. These maps are evaluated as a

tool that can be used for mission designers to choose initial conditions from the

map based on desired end conditions, as well as a method to predict the future

behavior of an unknown spacecraft based on a guess for its observed current or

initial conditions.

The feasibility of the designs in each test case are evaluated, and the ap-

proaches of “warfighting mission assurance” as defined by the Office of the As-

sistant Secretary of Defense for Homeland Defense and Global Security is also

discussed in this chapter [12]. The analysis and discussion of utilizing different

contingency options, as well as the idea of gaining insight about an unknown

spacecraft’s trajectory are explored as advantages to improve mission assurance.

∙ Chapter 5: A summary of the completed work is presented, along with conclusions

drawn from both the design processes used and the results generated from simu-

lations, as well as recommendations for future work that build on the outcomes

of this investigation.

1.6 Chapter 1 Summary

Military space operations can be advanced by implementing unconventional tra-

jectory design methods to transfer spacecraft between orbits. A summary of the

“rescue” story of AsiaSat-3/HGS-1 motivates the exploration of innovative solutions

that lower required Δ𝑉 and compute less predictable trajectories, as two fly-bys

around the Moon inserted the stranded spacecraft in a favorable orbit for less cost

than conventional methods. Considering more solution options by looking at an ex-
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panded design space and using advanced tools and numerical methods aligns with

the Air Force OODA Loop in “develop[ing] countermeasures,” as well as with the

goals in the highlighted sections of JP3-14 and Technology Horizons. Further study

of a multi-body dynamical environment, numerical methods, and Dynamical Systems

Theory as they apply to military space applications leads to increased understanding

of what is possible in a complex dynamical model, which aids in producing innovative

solutions in mission design. Before specific scenarios are detailed and analyzed, a

background of the CR3BP and the associated design methods are required.
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2. Background on the Fundamentals of the CR3BP Using
Numerical Methods

In order to fully the develop the ideas in this investigation, a brief historical back-

ground and an explanation of each topic presented in the test cases are necessary.

This chapter summarizes the major contributions to the field of astrodynamics that

make the research in this investigation possible and lays the foundation for modeling

in a multi-body environment. The dynamical model used in the current investiga-

tion, the circular restricted three-body problem (CR3BP), is introduced and derived,

and explanations are provided for perturbation theories, numerical integration, and

coordinate transformations to/from different reference frames. Details specific to the

CR3BP are also introduced, including the one known integral of the motion admitted

by the CR3BP, the model’s equilibrium solutions and the motion near them, the State

Transition Matrix (STM) developed from the equations of motion and equations of

variation, periodic solutions, invariant manifolds, resonant orbits, and Poincaré maps.

2.1 Historical Overview of Astrodynamics

The school of thought that led to the development of celestial mechanics began in

approximately 300 B.C. with Aristotle’s ponderings about the natural state of matter,

or if one existed. Although he wrongly believed that the center of the Earth was a

“natural place” toward which each celestial body was striving and that “if there exists

a motion, there must be a force,” his thinking sparked others to explore the concepts

and develop the principles that are fundamental to spaceflight dynamics [13]. In 100

A.D., Claudius Ptolemy proposed that the planets moved in circles with epicycles with

the Earth near the center of the system [14]. In 1543 Nicolaus Copernicus published

his heliocentric model of the solar system, showing how the planets moved about

the Sun at the system center rather than the Earth [13]. The Copernican revolution
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followed, opening the door for others to make more extensive observations. Galileo

developed the Law of Inertia and the concept of acceleration, publishing his findings

in 1610 and laying the study of celestial dynamics on a truly scientific foundation [13].

Johannes Kepler used Tycho Brahe’s observations to develop his laws of planetary

motion [14]:

∙ (1) The solar system is a Sun-centered system where the planets travel in ellipses

with the Sun at one focus instead of in circles with epicycles about the Earth

(published 1609) [13,14].

∙ (2) A line that connects a planet to the Sun sweeps out equal areas in equal times

(published in 1609) [13].

∙ (3) The period of a planet’s orbit around the Sun is proportional to the semi-major

axis of the ellipse raised to the 3
2
power, with a constant of proportionality that

is the same for all the planets (published in 1619) [8].

In the late 1600s, Isaac Newton explained the dynamics behind Kepler’s observa-

tional kinematics [13]. Building the foundation of dynamics are his laws of motion:

∙ (1) Every body at rest or in straight-line motion remains in that state unless acted

upon by a net applied force [8, 15].

∙ (2) The sum of the applied forces on a body is equal to the time rate of change of

momentum of the body [8].

∙ (3) For every applied force, there is an equal and opposite reaction force [8].

Newton’s Law of Gravitation is also worth noting, describing how the magnitude of

“the gravitational force [𝐹 ] acting between two bodies [with masses 𝑚1 and 𝑚2] is

proportional to the product of the masses and is inversely proportional to the square
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of the distance between them [where 𝑟 is the distance],” [8, 15], or:

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
, (1)

where 𝐺 is the gravitational constant (6.674× 10−11𝑁 · (𝑚
𝑘𝑔
)2). Newton used Kepler’s

laws of planetary motion and his own Law of Gravitation to derive the equations of

motion for the two-body problem and determine the solution [13]. Modern military

use of celestial mechanics started in 1767 when the Astronomer Royal Maskelyne

used Leonard Euler’s lunar theory as the basis for the lunar ephemeris in the British

Nautical Almanac, which was used by the British Navy for navigation [1]. Officially

published in 1772, Euler’s lunar theories made the first contribution to the devel-

opment of the CR3BP as he solved the problem of two fixed centers of force, using

Newton’s Law of Gravitation to describe the motion of two fixed masses acting on

a third body [1]. He also notably introduced the synodic, or rotating, coordinate

system, which led to Jacobi’s discovery of the integral admitted by the equations of

motion in 1836 [1]. Also known as the “Jacobian Integral” or defined in terms of the

“Jacobi Constant,” the integral connects the speed of the third body in the CR3BP to

its location. The existence of the integral implies certain accessible and “forbidden”

regions of motion for the third body, which George William Hill further examined in

his work in 1878, making a significant contribution to the field with the introduction

of “zero velocity curves and surfaces” [1].

In 1765, Euler discovered the first three of the five equilibrium solutions in the

CR3BP, the collinear points, and in 1772, Joseph Louis Lagrange discovered the last

two, the triangular points [8,16]. Altogether they are called the “Lagrange points,” or

“libration points” [8,16]. These five points are positions where the gravitational forces

are “balanced” between the two primary masses in the rotating frame [16]. Motion

near the equilibrium solutions became a focal point of study when looking at possi-
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ble motions in the CR3BP. Completing his three-part treatise Méthodes Nouvelles in

1899, Henri Poincaré’s contributions focused on the qualitative rather than quantita-

tive approach to celestial mechanics [1]. His work examined the stability of the solar

system, and he used the simplified, restricted three-body problem as his model [17].

He analyzed the local and global behavior of the dynamical system of the CR3BP. His

research laid the groundwork for many methods used in modern Dynamical Systems

Theory, including methods that will be discussed later, such as first-return maps, or

Poincaré maps, stability theory for periodic orbits, the concept of dynamical chaos,

and manifold dynamics. George David Birkhoff expanded Poincaré’s work to exam-

ine the dynamical theories further. For example, in 1927 he showed the existence

of an infinite number of periodic solutions to the restricted three-body problem [18].

In order to introduce the methods used in this research, various ways to handle the

perturbations caused by gravitational bodies in addition to the Earth are discussed.

2.2 General and Special Perturbations

Since the CR3BP has no known closed-form analytical solution, other engineer-

ing methods are explored to find useful dynamical information. General and special

perturbations offer two different avenues in approaching the problem. General per-

turbation methods are seen frequently in classical celestial mechanics and use series

expansions as a fundamental tool in a mathematical exploration of problems [1].

General perturbations uses analytical expressions to approximate perturbations and

initial conditions for problems [19]. Analysis with the theory of general perturbations

provides a series solution for small third-body perturbations, however it proves to be

unhelpful when needing an accurate representation of the full dynamics. Even though

this method produces a convergent series, the characteristics and properties of the

system cannot be derived from this general solution [1]. Though a higher-fidelity
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model is needed to represent the dynamics for a spacecraft under the gravitational

influence of both the Earth and the Moon, general perturbations is helpful when it is

valid to assume that third-body effects are just small perturbations on the motion.

Analytical approximations are used to investigate the motion in the vicinity of the

libration points in the CR3BP, and there are also useful approximations for certain

periodic solutions in the CR3BP. However, when a situation arises that includes per-

turbations not easily expressed by a simple algebraic formula, special perturbations

may provide insight [19].

Special perturbations is the term used by astrodynamicists when referring to the

“special” resulting orbit generated by numerically integrating the equations of motion

in an orbital problem [20]. Numerical approaches are commonly used when trying to

find a particular solution, for instance trying to find a solution to the 𝑛-body problem,

rather than for studying the behavior of the entire system or nearby solutions [1]. As a

mission designer studies a problem, a wide range of solutions must first be considered

in order to find the best solution for the problem. Taking a numerical approach, a

region of interest is selected, and practical initial conditions are used to compute the

group of possible orbits in the region. The disadvantage here is obviously the ruling

out of potential useful orbits or families of orbits because they did not stem from the

range of initial conditions used to establish the set of possible solutions [1]. Also note

that any numerical process also comes with an amount of error, which is discussed

further in the next section.

Numerical methods are associated with experimentation, and through time, these

experiments have only been as advanced as the available computational power. In

this way, numerical methods are becoming more relevant as technology improves.

Numerical studies can also reveal new dynamical motion in the CR3BP that cannot

be found or inferred in the 2BP. Periodic, quasi-periodic, or chaotic motion may
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be observed from integrating the CR3BP equations of motion. Applications using

numerical methods can provide insight into the inner mechanics of a nonlinear system

like the CR3BP and may inspire new design methods. Formulating the problem as

seen from a rotating frame with the primary system gives insight into distinctive

structures that contain new dynamical information. One known integral of the motion

is admitted by the CR3BP, termed the “Jacobi Constant” (𝐽𝐶) [1]. When looking

at the phase space of the problem, the 𝐽𝐶 reduces the dimension of the problem by

one. Considering a spacecraft in the Earth-Moon system with zero velocity, the 𝐽𝐶

then defines curves or surfaces of zero velocity that serve as the boundary between

an “accessible region” where a spacecraft could potentially travel and a “forbidden

region” where spacecraft motion is not physically possible in the CR3BP at that

energy-level [1]. Numerical integration provides the means necessary for implementing

special perturbations into the analysis of a spacecraft’s particular solution, or its

trajectory, in the CR3BP.

2.3 Numerical Integration

Andrew Claude de la Cherios Crommelin and Philip Herbert Cowell computed the

1910 return of Halley’s Comet using numerical integration to produce their prediction

[21]. Their calculation was accurate within three days, an astounding feat during

that time [21]. Direct numerical integration of the equations of motion in inertial,

rectangular coordinates in orbital mechanics is still referred to as Cowell’s Method,

after the mathematician with a specialty in the dynamics of motion [20, 21]. Most

targeting schemes and continuation methods in the present investigation converge

to solutions within an error tolerance of 10−12 nondimensional units. This tolerance

corresponds to the specifically defined error vector in each numerical algorithm derived

for the specific problems in the current investigation. As an example, this tolerance
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translates to an accuracy within 0.03844 cm in position across an entire error vector

of distances, and it represents a total error of 0.0000001025 cm/s across an entire

error vector of velocities. With this definition of the convergence criterion, accuracy

at each specific point is different, but the total error over all points in the error

vector corresponds to the tolerance value. These accuracies may offer even more

accuracy than is necessary close to the Earth and may be useful further out in the

system, but this is assuming that acceptable accuracy is still maintained at the end

of the integration [20]. Summing miniscule errors from rounding and truncation in

the inner-arithmetic of the integrator leads to decreased accuracy toward the end of

integration. With all integrators, there is a build-up of error that grows with the

integration time. Therefore, the limitation of numerical integration in this analysis

must be noted; short periods may produce dependable solutions to within a given

integration tolerance, but the accuracy achieved with longer periods of integration

may become less trustworthy. When chaotic behavior is observed in the system,

numerical error can cause significant changes. The more chaos the system experiences,

the more sensitive the resulting trajectories can be to their initial conditions.

This investigation’s numerical simulations were created using MATLAB R○ [22].

The integrators used for numerically integrating spacecraft trajectories are the built-

in MATLAB R○ functions, 𝑜𝑑𝑒45 and 𝑜𝑑𝑒113 [22]. The 𝑜𝑑𝑒45 function is an explicit

Runge-Kutta integrator based on a Dormand-Prince (4, 5) pair, which uses a step

control method that works well in many problems [23]. In this investigation, 𝑜𝑑𝑒45

is used for integrating small numbers of trajectories in a single simulation [24]. For

quicker algorithm run-time of more computationally intensive algorithms, a predictor-

corrector implemented from Adams-Bashforth-Moulton methods, 𝑜𝑑𝑒113, was used

[24]. In the present investigation, this integrator is used for simulations that integrate

larger numbers of spacecraft trajectories, such as for Poincaré maps. Both 𝑜𝑑𝑒45 and
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𝑜𝑑𝑒113 also require initial conditions. Since the outputs of the numerical simulations

using these functions do not compute exact (zero error) solutions, ways to track error

along with the integration are useful. A known integral of the motion for a system

or another known constant value given by the mathematics can serve as metrics to

track the numerical error as the trajectory is computed. It is also important to note

that the numerical simulations of the CR3BP are time-invariant. This is useful for

numerical integration of trajectories, since the solution for a specific time interval

is the same as a solution for an equivalent interval that begins at a different start

time [1]. In order to model spacecraft trajectories using numerical integration, the

gravitational environment of the CR3BP is first defined.

2.4 Simplifying Assumptions of the Circular Restricted Three-Body Prob-

lem

The problem of two bodies in orbital mechanics involves two bodies with spheri-

cally symmetric mass distributions that are treated as point masses, orbiting under

their mutual gravitational attraction. It has a closed-form analytical solution in terms

of conic sections: circles, ellipses, parabolas, hyperbolas, and straight lines [8]. The

circular restricted three-body problem defines the expanded design space in this inves-

tigation and introduces the gravitational forces of a third body, such as the Moon (or

Sun) in an Earth-spacecraft situation. This additional body increases the complexity

of the solution space significantly. Under certain conditions, when the spacecraft is

relatively close to one of the primary bodies, the CR3BP describes basic 2BP motion

with a perturbing effect [8, 25]. When the additional gravitational influence is no

longer just a small perturbation, as Wiesel states is the “fundamental assumption

of perturbation theory,” other models must be considered [20]. The general 𝑛-body

problem examines the orbits of a system of 𝑛 masses whose motion is influenced by
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their own gravitational fields [8]. According to Newton’s Law of Gravitation (equa-

tion (1)), the force of gravity between masses is proportional to the product of the

masses and inversely proportional to the square of the distance between them [8]. The

dynamical system depicting motion as observed by an inertial frame has 3𝑛 degrees

of freedom; a system of 6𝑛 first-order (or 3𝑛 second-order) differential equations de-

scribes the motion. When 𝑛 = 1, the solution is trivial and is described by Newton’s

first law. For 𝑛 = 2, there is a closed-form solution.

2.4.1 The Two-Body Problem

The two-body problem (2BP) setup describes two bodies modeled as point masses

that are moving under the forces of their mutual gravitational attraction. It is also

convenient to consider the restricted 2BP, in which the smaller of the two masses is

assumed to be negligible in comparison to the significantly larger mass of the other

body. Note that a more in-depth derivation of the 2BP equations of motion and their

solution is provided by many authors, including Szebehely and Wiesel [8, 15]. In the

inertial formulation of the problem where 𝑛 = 2, the equations of motion represent six

second-order, nonlinear, coupled ordinary differential equations, and twelve constants

of the motion are required to solve the problem [8]. Reformulating the problem to

define the relative motion between the two masses, which is no longer an inertial

construction of the problem, the relative equation of motion for the two-body problem

is:

¨⃗𝑟 =
−𝜇𝑟⃗

𝑟3
, (2)

where 𝑟⃗ is defined as the position vector of the body with smaller mass with respect

to the body with larger mass, ¨⃗𝑟 is its second time derivative, and

𝜇 = 𝐺(𝑀 +𝑚), (3)
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where 𝐺 is the gravitational constant, 𝑀 is the larger mass, and 𝑚 is the smaller

mass. Note that the frame of differentiation for these vectors is still an inertial frame.

From this point forward in the development, the solution for the restricted 2BP is

derived, in which the smaller mass is assumed to be negligible compared to the larger

mass (𝑚 << 𝑀). The system barycenter is then at the center of the larger mass

and serves as an inertially-fixed point. Considering the Earth-spacecraft 2BP as an

example, the center of the Earth serves as the inertially-fixed origin of the inertial

frame for the restricted 2BP, but note this does not hold true for the general 2BP.

The relative equation of motion in equation (2) decouples the relative-position

problem from the problem of the position of the system in inertial space. At this

point, six integrals of the motion are needed to solve the problem, and they can all

be found. Taking the dot product of each side of equation (2) with the first time

derivative of the position vector, ˙⃗𝑟, leads to finding the law of conservation of energy

(and the first constant of the motion) through the “vis-viva” equation,

𝜀 =
1

2
𝑣2 − 𝜇

𝑟
, (4)

where 𝜀 is the conserved value, specific mechanical energy, or the total energy per

unit mass of 𝑚 for the restricted 2BP, 𝑣 = ‖ ˙⃗𝑟‖, and 𝑟 = ‖𝑟⃗‖. Note that for the

general 2BP, 𝜀 is the total energy per unit reduced mass, where 𝑚𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
𝑚1𝑚2

𝑚1+𝑚2
.

Taking a cross product of each side of equation (2) with the radius vector, 𝑟⃗, leads

to the conservation of angular momentum [8]. The resultant definition of specific

angular momentum, 𝐻⃗ , is

𝑟⃗ × ˙⃗𝑟 = 𝐻⃗ . (5)

The three resulting constants of the motion are the components of the angular

momentum vector per unit mass of 𝑚 for the restricted 2BP. The final two constants
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of the motion needed to solve the 2BP are found by taking the cross product of

equation (2) with 𝐻⃗ . Performing the cross product and integrating the result, this

yields

˙⃗𝑟 × 𝐻⃗ − 𝜇
𝑟⃗

𝑟
= 𝜇𝑒⃗, (6)

where 𝑒⃗ is the constant eccentricity vector. This vector gives two additional, inde-

pendent constants of the motion since the definition of the angular momentum vector

already determined the plane of the orbit where 𝑒⃗ resides [8]. Taking the dot product

of both sides of equation (6) with 𝑟⃗ gives the solution to the 2BP, the polar form of

a conic section with the center of the primary body at one focus:

𝑟 =
𝐻2/𝜇

1 + 𝑒𝑐𝑜𝑠(𝜈)
=

𝑝

1 + 𝑒𝑐𝑜𝑠(𝜈)
, (7)

where𝐻 = ‖𝐻⃗‖, 𝑝 is the semi-latus rectum (half the chord through one focus, parallel

to the directrix [26]), and 𝜈 is the angle between vectors 𝑟⃗ and 𝑒⃗, or the true anomaly.

This equation implies that all solution trajectories in the 2BP are in terms of conic

sections: closed circular and elliptical orbits, parabolic, hyperbolic, and also straight-

line trajectories [8, 15]. Note that 𝑝 = 𝑎(1 − 𝑒2) for circles, ellipses, and hyperbolas,

where 𝑎 is the semi-major axis (half the distance of an elliptical orbit’s long axis) and

𝑒 = ‖𝑒⃗‖. The 2BP is typically used in problems involving the Earth (the larger mass)

and a satellite (the negligible mass). Most Earth satellites remain in closed circular or

elliptical trajectories about the Earth, for which a set of classical orbital elements may

be defined with respect to the Earth’s equatorial plane. A notional representation

of these elements for an elliptical Earth orbit is seen in Figure 1. Earth orbits in

the 2BP are also commonly defined with respect to the geocentric equatorial inertial

frame. This reference frame describes inertial, orthogonal directions originating at

the center of the Earth, represented by unit vectors, 𝑖̂, 𝑗̂, and 𝑘. The 𝑖̂ direction lies
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in the Earth’s equatorial plane, pointing to the first point of Aries, 𝛾, or from the

center of the Earth to the Sun on the first day of Spring in the northern hemisphere

(the vernal equinox) [27]. The 𝑘 direction points through the Earth’s north pole, and

the 𝑗̂ direction completes the right-handed set. Note that this frame is different from

the Earth-centered inertial frame of the CR3BP, defined in the next section.

First point 
of Aries 

(Υ) 

Spacecraft 

Earth’s 
equatorial 

plane 

Ascending 
Node 

Ω 

Perigee 
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𝜈 

𝑖 

2𝑎 
Spacecraft’s 

Orbit 

𝑟 
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𝚥̂ 
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Figure 1. Notional Representation of the Six Classical Orbital Elements with Respect
to Earth’s Equatorial Plane: Right Ascension of the Ascending Node (Ω), Argument of
Perigee (𝜔), Inclination (𝑖), True Anomaly (𝜈), Semi-major Axis (𝑎), and Eccentricity
Vector (with Magnitude 𝑒).

In Figure 1, the classical orbital elements are defined for an elliptical orbit with

respect to the Earth’s equatorial plane. The right ascension of the ascending node

(Ω) is defined with respect to the first point of Aries, 𝛾, which is a point considered

to be sufficiently inertial among the approximately “fixed” stars [8]. The angle Ω is

measured in the eastward direction, defining the location of where the orbit crosses

from south to north (its ascending node) [8]. The argument of perigee (𝜔) is the angle

in the orbital plane between the line of nodes (the nodal vector, 𝑛⃗ in Figure 1) and

the vector between the center of the Earth to the orbit’s point of perigee, which is
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also the eccentricity vector, 𝑒⃗ [8]. The inclination (𝑖) is the angle between the Earth’s

equatorial plane and the orbital plane. The true anomaly (𝜈), as mentioned before, is

the angle between the eccentricity vector, 𝑒⃗ and the radius vector, 𝑟⃗. The semi-major

axis (𝑎) is the length of half of the long axis of the orbit, labeled 2𝑎 in Figure 1. The

eccentricity (𝑒) in general defines the type of conic section, and it describes the shape

of closed orbits. This set of orbital elements can completely define an orbit solution

in the 2BP [8]. Note that for orbits that lie in the equatorial plane, Ω is undefined,

and for circular orbits, 𝜔 and 𝜈 are undefined. Alternate orbital elements can then

be used to define an orbit. Longitude of perigee (Π) is used to define the perigee

location in the equatorial case (if the orbit is not also circular), argument of latitude

(𝑢) defines the position vector from the ascending node for circular orbits (if the orbit

is not also equatorial), and true longitude (𝑙) defines the spacecraft location for orbits

that are both equatorial and circular [8, 32].

Closed satellite orbits also have a defined orbital period, 𝑃2𝐵𝑃 , which is expressed

by,

𝑃2𝐵𝑃 = 2𝜋

√︃
𝑎3

𝜇
. (8)

The orbital mean motion, or the mean angular frequency of the orbit, 𝑛2𝐵𝑃 , is defined,

𝑛2𝐵𝑃 =

√︂
𝜇

𝑎3
. (9)

These quantities are also defined in terms of the CR3BP in Section 2.5. Though

they are derived in the 2BP, the orbital elements can also be useful in the analysis

of trajectories in the CR3BP. In Section 4.1.1, “osculating” orbital elements are used

to examine a transfer solution by determining the instantaneous orbital elements

at each time step along the numerically integrated trajectory in the CR3BP. While

the restricted 2BP was derived above, the solution describing conic sections, the
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relationships in equations (8) and (9), and the constants of the motion extend to the

general 2BP. In the next section (Section 2.4.2), the CR3BP uses the general 2BP to

describe the motion of the two larger masses considered in the model.

2.4.2 The Circular Restricted Three-Body Problem

In the 𝑛-body problem, when 𝑛 = 3, no closed-form analytical solution is known

[8]. The addition of just one more body indicates that eighteen integrals of the

motion are needed to solve the problem, while the 𝑛-body problem in general has only

ten known integrals of the motion: energy provides one, the conservation of linear

momentum gives six, and the conservation of angular momentum offers three [8]. In

the 2BP derivation, decoupling the relative problem of two bodies from the initial 2BP

of the system in inertial space provided enough integrals of the motion to solve the

problem. Unfortunately, the same process of reformulating the problem to describe

the relative motion of the bodies does not provide enough integrals of the motion to

solve the three-body problem. Simplifying assumptions are made in order to gain

more insight into the problem.

As in the two-body problem, in the general three-body problem, all bodies are

modeled as point masses and the gravitational forces of each are assumed to influence

the motion of the others. The two most massive of the three bodies are labeled 𝑃1

and 𝑃2, and if the two primaries are of unequal masses, the most massive is called

𝑃1, by convention. The third and least massive body is 𝑃3. For the restricted three-

body problem, the mass of the third body, 𝑚3, is assumed to be negligible when

compared to the masses of the primary bodies, 𝑚1 and 𝑚2, respectively for 𝑃1 and 𝑃2

(𝑚3 << 𝑚1,𝑚2) [1, 25]. With this assumption, the gravitational field of 𝑃3 does not

influence the motion of the primaries. This leads to the assumption that the motion

of 𝑃1 and 𝑃2 is, in general, described by conics in the primaries’ own isolated, solved
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two-body system. The final simplifying assumption is that 𝑃1 and 𝑃2 have circular

orbits about their barycenter, 𝐵 [1, 25]. In general, the circular orbit assumption is

not necessary, but simplifies the analysis. Thus, the circular restricted three-body

problem is defined.

2.5 Equations of Motion and Nondimensionalization

Since 𝑃1 and 𝑃2 move in circular orbits about the system barycenter, 𝐵, their

orbital motion is described by the two-body equation of motion. The differential

equations of motion (EOMs) defined in the CR3BP govern the motion of 𝑃3 as it

is influenced by the movement of the primaries [1, 25]. The EOMs for the general

𝑛-body problem are defined by:

𝑚𝑖
¨⃗𝑟𝑖 = −𝐺

𝑛∑︁
𝑗=1, 𝑗 ̸=𝑖

𝑚𝑖𝑚𝑗

𝑟3𝑗𝑖
𝑟⃗𝑗𝑖, (10)

where 𝑃𝑖 and 𝑃𝑞 (defined with respect to an inertial frame with position vectors 𝑟⃗𝑖

and 𝑟⃗𝑞, respectively) are two of 𝑛 total particles in a system, 𝐺 is the universal

gravitational constant, 𝑟⃗𝑗𝑖 = 𝑟⃗𝑖 − 𝑟⃗𝑗, and 𝑟𝑗𝑖 = ‖𝑟⃗𝑗𝑖‖. The 𝑛-body system setup is

described as seen by an inertial observer in Figure 2.

The governing equation of motion for ¨⃗𝑟𝑞𝑖, representing the relative motion of two

bodies (𝑃𝑖 with respect to 𝑃𝑞), is then

¨⃗𝑟𝑞𝑖 +𝐺
(𝑚𝑖 +𝑚𝑞)

𝑟3𝑞𝑖
𝑟⃗𝑞𝑖 = 𝐺

𝑛∑︁
𝑗=1, 𝑗 ̸=𝑖,𝑞

𝑚𝑗(
𝑟⃗𝑖𝑗
𝑟3𝑖𝑗

− 𝑟⃗𝑞𝑗
𝑟3𝑞𝑗

). (11)

The first term on the left hand side (LHS) of equation (11), ¨⃗𝑟𝑞𝑖, is the acceleration

of the relative vector of 𝑃𝑖 with respect to 𝑃𝑞, and the remaining expression on

the LHS is the so-called “dominate” acceleration term (though not necessarily the
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Figure 2. 𝑛-Body Problem Setup in Inertial Frame.

largest perturbing term) [25]. On the right hand side (RHS), the term with 𝑟⃗𝑖𝑗

in the numerator represents the direct perturbing acceleration of all other bodies

and forces in the system gravitationally pulling on 𝑃𝑖. The term with 𝑟⃗𝑞𝑗 in the

numerator on the RHS is the indirect perturbing acceleration of all bodies and forces

that have a gravitational pull on 𝑃𝑞 [8, 25]. Note that if all perturbations were to be

removed from the system, the RHS of equation (11) is equal to zero and the equation

describes solvable two-body relative motion. However, if even one additional gravity

field (one additional body) is added to the system, there is mathematically no longer

a closed-form analytical solution [1, 8, 25]. To explore the relative formulation of the

three-body problem, consider the system of the Earth (𝑃1), Sun (𝑃2), and Moon (𝑃3).

When considering a third body, the relative equations of motion (following the form

in equation (11)) must be solved for the relative motion of the Moon with respect

to the Earth, ¨⃗𝑟13, and the relative motion of the Moon with respect to the Sun, ¨⃗𝑟23,
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seen below.

¨⃗𝑟13 +𝐺
(𝑚1 +𝑚3)

𝑟313
𝑟⃗13 = 𝐺𝑚2(

𝑟⃗32

𝑟332
− 𝑟⃗12

𝑟312
), (12)

where the term with 𝑟⃗32 in the numerator represents the Sun’s perturbation on the

Moon (direct perturbation term), and the term with 𝑟⃗12 in the numerator represents

the Sun’s perturbation on the Earth (indirect perturbation term).

¨⃗𝑟23 +𝐺
(𝑚2 +𝑚3)

𝑟323
𝑟⃗23 = 𝐺𝑚1(

𝑟⃗31

𝑟331
− 𝑟⃗21

𝑟321
), (13)

where the term with 𝑟⃗31 in the numerator represents the Earth’s perturbation on the

Moon (direct perturbation term), and the term with 𝑟⃗21 in the numerator represents

the Earth’s perturbation on the Sun (indirect perturbation term). The third relative

equation of motion (¨⃗𝑟12), may be defined by the relation ¨⃗𝑟12 = ¨⃗𝑟13 + ¨⃗𝑟32. Therefore,

to solve this relative formulation of the three-body problem, the relative EOMs must

be solved simultaneously, requiring twelve integrals of the motion. Since there are

only ten integrals of the motion available, the relative formulation of the three-body

problem does not aid in finding a solution. When solving the two-body problem,

reformulating the problem in terms of a relative equation of motion is significant

enough to afford a solution, but doing so in the three-body problem still leaves the

problem unsolved.

Returning to the general 𝑛-body equations of motion in equation (10) and con-

sidering 𝑛 = 3 bodies, the equation of motion for the third body becomes

𝑚3
¨⃗𝑟3 = −𝐺

𝑚3𝑚1

𝑟313
𝑟⃗13 −𝐺

𝑚3𝑚2

𝑟323
𝑟⃗23, (14)

and the equations of motion for 𝑃1 and 𝑃2 follow similar form:

𝑚1
¨⃗𝑟1 = −𝐺

𝑚2𝑚1

𝑟321
𝑟⃗21 −𝐺

𝑚3𝑚1

𝑟331
𝑟⃗31 (15)
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𝑚2
¨⃗𝑟2 = −𝐺

𝑚1𝑚2

𝑟312
𝑟⃗12 −𝐺

𝑚3𝑚2

𝑟332
𝑟⃗32 (16)

Let 𝑋̂, 𝑌 , and 𝑍 define the orthogonal unit vectors of the inertial frame where the

𝑋̂-𝑌 plane is the fixed plane of mutual primary motion. An illustration of the three-

body system setup in the inertial frame originating at the system Barycenter, 𝐵, is

seen in Figure 3.

Figure 3. Three-Body Problem Setup in Inertial Frame.

Notice that the vector EOMs for each body must be solved simultaneously and will

require eighteen integrals of the motion to obtain a closed-form analytical solution.

Only ten integrals of the motion are available, therefore solving the system in this

form is not possible. In summary, neither the relative equations of motion (requiring

twelve integrals of the motion) nor the inertial equations of motion (requiring eighteen

integrals of the motion) for the general problem of three bodies offer a formulation

that allows a solution to the problem to be found (with ten known integrals of the

motion available).

Variables are redefined in order to look at the problem in a synodic, or rotating,
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frame with orthogonal unit vectors 𝑥̂, 𝑦, and 𝑧 centered at 𝐵. By convention, the 𝑥̂

direction points through the primaries from 𝑃1 to the direction of 𝑃2. Observing the

rotating frame, 𝑅, as it is defined with respect to the inertial frame, 𝐼, both the 𝑍 and

𝑧 components are along the angular momentum vector of the two-body system of the

primaries. The 𝑦 direction of 𝑅 then completes the orthogonal set of the barycentric

rotating frame. The orientation of 𝑅 with respect to 𝐼 is described by the angle, 𝜃.

Since the primaries are in circular orbits, 𝜃 is changing at a constant rate, 𝜃, which is

the angular velocity of the primary system. This constant is also the mean motion of

the circular orbits of the primaries, 𝑁 . For simplicity, let 𝐷⃗ = 𝑟⃗13 and 𝑅⃗ = 𝑟⃗23. The

vector from 𝐵 to 𝑃3 is defined as 𝑝. The system setup of the barycentric rotating

frame as it relates to the inertial frame is illustrated in Figure 4.

    𝑝⃗ 

Figure 4. Definition of Barycentric Rotating Frame in CR3BP with Respect to Inertial
Frame.

The variables in the CR3BP are often defined with nondimensional units. Nondi-

mensional units are useful in numerical simulations since computers have a limited
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number of digits for each computed value that they can represent with a given pre-

cision floating point number [28]. A numerical simulation can only handle numbers

that are within certain limits based on the achievable precision, or numbers that are

not too small or too large for the system to deal with [28]. In numerical simulations

dealing with a large variety of calculations, values near the center of these limits (close

to the value of one) are typically chosen [28]. For this reason, in this investigation,

nondimensional mean motion, 𝑛, and the nondimensional gravitational constant, 𝐺,

are normalized with unity value. Nondimensional units also help the mission planner

to compare different CR3BP systems of bodies with different masses and distances.

For the discussion hereafter, time derivatives with respect to dimensional time are

expressed with the following notation: 𝑝′′. Time derivatives with respect to nondi-

mensional time, on the other hand, are expressed as: ¨⃗𝜌. The dimensional universal

gravitational constant is labeled 𝐺̃, while the nondimensional version is expressed

𝐺. Also note that several dimensional and nondimensional variables are defined with

upper and lower case variables, respectively (one exception being dimensional 𝑝 and

nondimensional 𝜌). Equation (14) may then be expressed as:

𝑚3𝑝
′′ = −𝐺̃

𝑚3𝑚1

𝐷3
𝐷⃗ − 𝐺̃

𝑚3𝑚2

𝑅3
𝑅⃗, (17)

where 𝐷 = ‖𝐷⃗‖ and 𝑅 = ‖𝑅⃗‖. There is a set of specifically defined values, or

“characteristic quantities” that serves to define a nondimensional system of variables.

Each characteristic quantity, denoted with an asterisk (*), is defined in the equations

below.

𝑙* = 𝐷1 +𝐷2, (18)
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where 𝐷𝑖 = ‖𝐷⃗𝑖‖ is constant with the assumption of circular orbits.

𝑚* = 𝑚1 +𝑚2 (19)

𝑡* =

√︃
(𝐷1 +𝐷2)3

(𝐺̃(𝑚1 +𝑚2))
=

√︂
𝑙*3

𝐺̃𝑚*
=

1

𝑛
, (20)

selected such that 𝐺 = 1, and where 𝑛 = nondimensional mean motion. Note that

equation (20) is equivalent to the time it takes for 𝑃3 to travel one radian, and by

extension, one orbital period, 𝑃 , of 𝑃3 in the CR3BP. This is given by:

𝑃 = 2𝜋𝑡* =
2𝜋

𝑛
= 2𝜋, (21)

since nondimensional mean motion, 𝑛, is normalized to one. Because 𝑙* is assumed

to be equal to the two-body semi-major axis of the primaries’ orbit,

𝐺̃𝑚* = 𝐺̃𝑚1 + 𝐺̃𝑚2, (22)

and the mass ratio, 𝜇, may be defined:

𝜇 =
𝑚2

𝑚1 +𝑚2

=
𝐺̃𝑚2

𝐺̃(𝑚1 +𝑚2)
=

𝑚2

𝑚* . (23)

Each dimensional quantity in question may be expressed as a nondimensional quantity

by dividing it by the appropriate characteristic quantity expression. For instance,

nondimensional time, 𝑡, can be computed from dimensional time, 𝑇 , by:

𝑡 =
𝑇

𝑡*
. (24)

Other important definitions include the characteristic quantity expression for velocity,
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𝑙*

𝑡*
, and the following mass relations:

𝑚2

𝑚* = 𝜇 (25)

𝑚1 +𝑚2

𝑚* = 1 (26)

𝑚1

𝑚* = 1− 𝜇 (27)

To derive the nondimensional equations of motion, equation (17) is divided by 𝑚3,

and expressing the equation in nondimensional variables, the result is:

𝐼 ¨⃗𝜌 =
−(1− 𝜇)𝑑

𝑑3
− 𝜇𝑟⃗

𝑟3
, (28)

where 𝑑 = nondimensional 𝐷⃗ and 𝑟⃗ = nondimensional 𝑅⃗. Notice the equation of

motion for 𝑃3 above (equation (28)) still describes an inertial second derivative with

respect to time. Recall the rotating frame definition of position for 𝑃3,

𝜌 = 𝑥𝑥̂+ 𝑦𝑦 + 𝑧𝑧, (29)

and similarly,

𝑅 ˙⃗𝜌 = 𝑥̇𝑥̂+ 𝑦̇𝑦 + 𝑧̇𝑧, (30)

which is the relative velocity of 𝑃3 in the rotating frame (where the frame of differenti-

ation is the rotating frame). The “transport theorem” is applied in this investigation

when taking the inertial derivative of any vector, 𝑎⃗, that is expressed in the rotating

frame, using the angular velocity of the rotating frame with respect to the inertial

frame, 𝜔⃗𝑅𝐼 [25, 29]:

𝐼 𝑑

𝑑𝑡
(𝑎⃗) =𝑅 𝑑

𝑑𝑡
(𝑎⃗) + 𝜔⃗𝑅𝐼 × (𝑎⃗) (31)

By applying the “transport theorem” (equation (31)) twice, equation (28) may be
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written as three scalar, second order (nondimensional) ordinary differential equations

that describe the motion for 𝑃3:

𝑥̈− 2𝑛𝑦̇ − 𝑛2𝑥 =
−(1− 𝜇)(𝑥+ 𝜇)

𝑑3
− 𝜇(𝑥− 1 + 𝜇)

𝑟3
(32)

𝑦 + 2𝑛𝑥̇− 𝑛2𝑦 =
−(1− 𝜇)𝑦

𝑑3
− 𝜇𝑦

𝑟3
(33)

𝑧 =
−(1− 𝜇)𝑧

𝑑3
− 𝜇𝑧

𝑟3
, (34)

where 𝑑 =
√︀
(𝑥+ 𝜇)2 + 𝑦2 + 𝑧2 and 𝑟 =

√︀
(𝑥− 1 + 𝜇)2 + 𝑦2 + 𝑧2. In this investiga-

tion, since circular orbits are assumed, 𝑛 = 1 for these equations. Recall the angle

𝜃 = 𝑁𝑡, defining the barycentric rotating frame as it relates to the inertial frame with

dimensional mean motion and dimensional time in Figure 4. Nondimensionalizing and

substituting 𝑛 = 1, the rotation angle, 𝜃, between the rotating and inertial frames is

found to be equal to nondimensional time, 𝑡. This also implies that one orbital period

of the primaries is 2𝜋 nondimensional units. The instantaneous nondimensional time

derivative of this angle, 𝜃 is then found to be:

𝜃 =
𝑑𝜃

𝑑𝑡
=

𝑑(𝑛𝑡)

𝑑𝑡
= 𝑛 = 1. (35)

In order to solve the equations of motion defined in the rotating frame (equations

(32)-(34)), six integrals of the motion would be required, but only one is known to

exist (see Section 2.7). For this reason, the equations of motion are numerically

integrated in this investigation, creating simulations of possible trajectories of 𝑃3 in

the Earth-Moon CR3BP. In general, 3-D motion of the third body is possible. Notice,

however, that a spacecraft with an initial position and velocity in the plane of the

primaries (𝑥-𝑦 plane) remains in the plane for all finite time unless perturbed out-of-

plane. For this reason, the CR3BP can be considered as a planar (2-D) problem or a
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full spatial (3-D) problem.

2.6 Coordinate Transformation of Vectors in the Barycentric Rotating

Frame to/from the Earth-Centered Inertial Frame of the CR3BP

Although plotting trajectories in the rotating reference frame of the Earth-Moon

system is useful for missions utilizing certain applications such as resonant orbits and

libration point dynamics, it is important to visualize the same trajectories in the

Earth-centered inertial reference frame of the CR3BP. Different from the geocentric

equatorial inertial frame, the inertial frame of the CR3BP is defined at the center

of the Earth with its 𝑋-𝑌 plane aligned with the 𝑥-𝑦 plane of the primaries. At

the initial time, 𝑡0, the 𝑋̂ direction is aligned with the 𝑥̂ direction of the rotating

frame. Some of the shapes and behaviors of trajectories noticeable in the rotating

frame may not appear so obvious from the inertial perspective. This characteristic

is apparent in Figure 5. Figures 5 (a) and 5 (b) show the same spacecraft trajectory

in the rotating and inertial frames, respectively. Both are numerically integrated

trajectories propagated for 7 nondimensional time units, or about 30 days. These

figures show a trajectory that appears as a slightly perturbed, higher-altitude two-

body orbit in the inertial frame. From observing Figures 5 (a) and 5 (b), the rotating

frame shows a trajectory that does not seem like a periodic orbit in the rotating

frame, but that follows some sort of pattern as it orbits the Earth. Figures 5 (c)

and 5 (d) show the same trajectory, propagated for 32 nondimensional time units,

or about 139 days (4.6 months). While the trajectory initially appears to be staying

close to a two-body orbit, longer propagation and examination in the rotating frame

shows that a spacecraft following this trajectory diverges from the two-body orbit

at 9 nondimensional units (39 days) and travels around the 𝐿1 libration point (see

section 2.8 for further discussion on libration points), and then orbits around the

38



Moon for about 90 days before coming back near the Earth with total time equal to

about 30 nondimensional time units (129 days). This type of trajectory has numerous

potential applications for Moon missions, as a spacecraft on this trajectory naturally

and repeatedly orbits about both the Earth and Moon.

Examining the orbit in the inertial frame has little indication of the dramatic

change until the trajectory actually changes, and even when it does, the orbits about

the libration point and the Moon are not obvious at first. Viewing the same trajectory

in the rotating frame clearly shows these behaviors at first glance. Notice Figure

5 shows “forbidden regions” in each rotating frame plot. The curves surrounding

the “forbidden” sections represent the physical position of where a spacecraft in the

CR3BP has zero velocity as defined by the CR3BP’s one known integral of the motion,

the Jacobi Constant (see Section 2.7). The “forbidden regions” represent where the

possible velocity for a spacecraft has a nonphysical value (𝑣2 < 0). These curves of

zero velocity serve as a preview for the explanation of the integral of the motion and

its implications, defined in the next section.

Recognizing this type of behavior in the rotating frame gives advantage to the

mission planner in terms of “predictability” for spacecraft orbits. It may be possible

to predict a future location, orbit shape, or general trajectory behavior by examin-

ing trajectories in a different frame. Recognizing resonant orbit arcs and spacecraft

trajectories traveling near the equilibrium points in the rotating frame can possibly

help to predict where a spacecraft on the trajectory will be some time in the future.

Further discussion of the predictability aspect of frame perspective is found in Section

4.3.1.

The following discussion on how to transform a trajectory in the barycentric ro-

tating frame to the Earth-centered inertial frame is based on Haapala’s development

for the same transformation [30]. Recall from Figure 4 that 𝜌 is defined as the vector
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(a) (b) 

(c) (d) 

Figure 5. Numerically Integrated Spacecraft Trajectory in (a) Barycentric Rotat-
ing Frame (Integration time = 7 nondimensional units (about 30 days)), (b) Earth-
Centered Inertial Frame (Integration time = 7 nondimensional units (about 30 days)),
(c) Barycentric Rotating Frame (Integration time = 32 nondimensional units (about
139 days), and (d) Earth-Centered Inertial Frame (Integration time = 32 nondimen-
sional units (about 139 days)) in CR3BP.
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from the system barycenter to 𝑃3, and 𝜃 is defined as the orientation angle from the

𝑋-axis of the inertial frame to the 𝑥-axis of the rotating frame. the Earth-centered

inertial frame is initially aligned with the rotating frame (at initial time, 𝑡0), and

therefore 𝜃 changes at a constant rate and is also equal to the nondimensional time, 𝑡.

The Direction Cosine Matrix (DCM), 𝑅𝑅𝐼 , rotates the position vector of 𝑃3 from the

rotating frame to the inertial frame [8]. The DCM rotates the vector it pre-multiplies

about the common 𝑧-axis between both frames. As defined below, 𝑅𝑅𝐼 is an explicit

function of nondimensional time, 𝑡.

𝑅𝑅𝐼 =

⎡⎢⎢⎢⎢⎣
cos(𝑡− 𝑡0) −sin(𝑡− 𝑡0) 0

sin(𝑡− 𝑡0) cos(𝑡− 𝑡0) 0

0 0 1

⎤⎥⎥⎥⎥⎦ (36)

The inverse transformation (𝑅𝑅𝐼)−1 = 𝑅𝑅𝐼 is the DCM that rotates vectors from

inertial to rotating coordinates. Expressing the state vector, 𝑋⃗, in both inertial

and rotating coordinates is often useful. The expressions for the position and velocity

vectors that make up the rotating frame state vector definition used in the simulations

in this investigation, 𝑋⃗
𝑅
, are shown below, where 𝜌 is the position of 𝑃3 in the

rotating frame. The vector 𝐼 ˙⃗𝜌 is the velocity of 𝑃3 in the rotating frame, found by

employing the “transport theorem” (equation (31)) to 𝜌.

𝜌 = 𝑥𝑥̂+ 𝑦𝑦 + 𝑧𝑧 (37)

𝐼 ˙⃗𝜌 = ˙⃗𝜌 = (𝑥̇− 𝑛𝑦)𝑥̂+ (𝑦̇ + 𝑛𝑥)𝑦 + 𝑧̇𝑧, (38)
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where 𝑛 = 1 with the assumption of circular orbits, and

𝑋⃗
𝑅
=

⎡⎢⎣ 𝜌

˙⃗𝜌

⎤⎥⎦ . (39)

Transforming the state vector in the rotating frame to Earth-centered inertial coor-

dinates uses the same DCM as before, as well as its time derivative, 𝑅̇𝑅𝐼 , [30]:

𝑋⃗
𝐼
=

⎡⎢⎣ 𝑅𝑅𝐼 03𝑥3

𝑅̇𝑅𝐼 𝑅𝑅𝐼

⎤⎥⎦[︁𝑋⃗𝑅
+ 𝜇𝑥̂

]︁
, (40)

where

𝑅̇𝑅𝐼 =

⎡⎢⎢⎢⎢⎣
−sin(𝑡− 𝑡0) −cos(𝑡− 𝑡0) 0

cos(𝑡− 𝑡0) −sin(𝑡− 𝑡0) 0

0 0 0

⎤⎥⎥⎥⎥⎦ (41)

and (𝑋⃗
𝑅
+ 𝜇𝑥̂) translates the coordinates from the barycentric frame to the Earth-

centric frame with a shift in the 𝑥̂ direction. The inverse of this transformation matrix

gives the transformation from the inertial to rotating frame. Element by element, the

transformation from the barycentric rotating frame to the Earth-centric inertial frame

is:

𝑋 = (𝑥+ 𝜇)cos(𝑡)− 𝑦sin(𝑡) (42)

𝑌 = (𝑥+ 𝜇)sin(𝑡) + 𝑦cos(𝑡) (43)

𝑍 = 𝑧 (44)

𝑋̇ = −(𝑥+ 𝜇)sin(𝑡)− 𝑦cos(𝑡) + 𝑥̇cos(𝑡)− 𝑦̇sin(𝑡) (45)

𝑌̇ = (𝑥+ 𝜇)cos(𝑡)− 𝑦sin(𝑡) + 𝑥̇sin(𝑡) + 𝑦̇cos(𝑡) (46)
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𝑍̇ = 𝑧̇ (47)

Note that some authors consider 𝑃2-centric inertial frames for analysis, which would

result in a shift in the −𝑥̂ direction by 1− 𝜇 to account for the translation between

frames before multiplying by the 6× 6 matrix in equation (40).

2.7 Integral of the Motion

When desiring to look at the dynamics in the rotating frame, adding a third body

will still give a conservative system of forces as it does in the inertial frame. This

implies that an energy (or energy-like) constant may exist [1, 25]. It is possible to

derive the integral of the motion associated with the differential equations in equations

(32)-(34). Note that in general, this integral is not a property of the system, but an

aspect of the synodic formulation of the problem. The EOMs in equations (32)-(34)

can be further simplified by defining the scalar “pseudopotential,” 𝑈* in the rotating

frame:

𝑈* =
(1− 𝜇)

𝑑
+

𝜇

𝑟
+

1

2
𝑛2(𝑥2 + 𝑦2), (48)

where 𝑛 = 1 with the assumption of circular orbits. The scalar CR3BP EOMs

describing the motion of 𝑃3 can then be defined in terms of the pseudopotential:

𝑥̈− 2𝑦̇ = 𝑈*
𝑥 (49)

𝑦 + 2𝑥̇ = 𝑈*
𝑦 (50)

𝑧 = 𝑈*
𝑧 , (51)

where 𝑈*
𝑥 = 𝜕𝑈*

𝜕𝑥
, 𝑈*

𝑦 = 𝜕𝑈*

𝜕𝑦
, and 𝑈*

𝑧 = 𝜕𝑈*

𝜕𝑧
. In theory, all the needed information

is available to mathematically solve the EOMs above (equations (49)-(51)), but this

may prove to be difficult, as these equations are highly nonlinear and highly coupled.
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As an earlier explanation mentioned, the inertial formulation of the three-body

problem requires eighteen constants of the motion to be solved, and the relative for-

mulation requires twelve. Looking at the problem in the rotating frame gives three

second-order ordinary differential equations for the motion of 𝑃3 under the gravita-

tional influence of the primaries (equations (49)-(51)), which requires six integrals of

the motion to solve. Though it does not completely solve the problem, the CR3BP

admits one known integral of the motion, named the Jacobi Integral (or Jacobi Con-

stant), leading to numerous implications [1,25,31]. Carl Gustav Jacob Jacobi discov-

ered the integral of the motion by looking at the equations of motion in the synodic

coordinate system described above, [1, 25].

To derive the integral, the scalar dot products of the differential equations of

motion (equations (49)-(51)) and the relative velocity of 𝑃3 in 𝑅 (equation (30)) are

calculated and then summed to yield the following:

𝑥̇𝑥̈+ 𝑦̇𝑦 + 𝑧̇𝑧 =
𝑑𝑈*

𝑑𝑡
(52)

Equation (52) is then directly integrated over nondimensional time, 𝑡, and the result

is,

1

2
(𝑥̇2 + 𝑦̇2 + 𝑧̇2) = 𝑈* + 𝐶, (53)

where C is the constant of integration. For convenience, C is defined such that

𝐶 = −𝐽𝐶
2

, where 𝐽𝐶 is the Jacobi Constant. Recognizing (𝑥̇2 + 𝑦̇2 + 𝑧̇2) = ‖ ˙⃗𝜌‖2 = 𝑣2,

where 𝑣 is the relative speed of 𝑃3 in the rotating frame, 𝐽𝐶 is then expressed in the

form,

𝐽𝐶 = 2𝑈* − 𝑣2. (54)
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Expanding the expression,

𝐽𝐶 = 𝑥2 + 𝑦2 +
2(1− 𝜇)

𝑑
+

2𝜇

𝑟
− 𝑣2. (55)

Note that other authors may define 𝐽𝐶 differently with relation to the constant

of integration, 𝐶. The definition in the current investigation is chosen such that

𝐽𝐶 = −2𝐻, where 𝐻 is the Hamiltonian of the system [1,25,32]. As seen in equation

(55) above, a given 𝐽𝐶 value connects the speed of 𝑃3 with its location. Considering

a spacecraft in the Earth-Moon CR3BP at a given position and velocity, the value

of 𝐽𝐶 is established by its conditions [31]. As a spacecraft moves through the space,

changing in position and velocity, the integration constant associated with the trajec-

tory does not vary. Examining equation (54), the magnitude of the velocity vector is

squared, implying that calculating the position and velocity coordinates on a space-

craft trajectory from a known 𝐽𝐶 yields a solution for both positive and negative

values of velocity [31]. Also notice that in general the 𝐽𝐶 can be positive or negative,

but it will always be positive when velocity of the spacecraft is zero. In equation (55),

𝑥2 > 0, 𝑦2 > 0, and the last two terms will always be positive since 0 < 𝜇 < 1 and 𝑑

and 𝑟 are positive distances, yielding a positive value when 𝑣 = 0.

As seen in the relationship with the system pseudopotential (equation (54)), the

𝐽𝐶 is a quantity that is inversely related to system energy level. As the 𝐽𝐶 increases,

the system energy level decreases, and vice versa. Since the 𝐽𝐶 remains constant for

the duration of any trajectory, it may also be calculated along a trajectory as the

trajectory is numerically integrated in order to track changes and therefore assess the

error in the simulation [31]. Examining the same spacecraft trajectory as in Figure

5, the error of the 𝐽𝐶 along the spacecraft trajectory is seen for integration times

of about 31 days and 1.12 years in Figures 6 and 7. In these figures, zero Jacobi

Constant error would correspond to zero change in the 𝐽𝐶, and therefore no error
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in the numerical simulation. In Figure 6, as integration time increases, the error’s

absolute value also increases.

Figure 6. Tracking Numerical Error with Jacobi Constant for 7 Nondimensional Units
(About 30 days) (Left: Trajectory in Configuration Space, Right: Error Along Trajec-
tory).

The error is seen to sharply increase when the spacecraft approaches the Earth

and tends to settle when the spacecraft is farther away from the primary. The greatest

amount of error seen in this example is observed around 12 days, at a point along

the trajectory when the spacecraft is closer to the Earth. The value of this maximum

is 16 × 10−14, which is comparable to the integration tolerance in this simulation of

10−13 nondimensional units. In Figure 7, a longer integration time is observed (15

revolutions of the primaries or 1.12 years). The 𝐽𝐶 error is seen to reach roughly

20× 10−12 at about 95 days. At this point, the trajectory impacts the Moon, as seen

in Figure 8.

The close proximity to the primaries causes a rapid build-up in the numerical

integration error. Long-duration numerical integration also shows the build-up of the

integration error over time. Since in general, chaos is present in the CR3BP, error in

numerical simulations can make a substantial difference when resulting trajectories
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Figure 7. Tracking Numerical Error with Jacobi Constant for 15 Revolutions of the
Primaries (About 1.12 Years) (Left: Trajectory in Configuration Space, Right: Error
Along Trajectory).
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Figure 8. Zoomed View Near Moon Region Showing Impact of Spacecraft Trajectory
at 22.32 Nondimensional Time Units (About 95 Days).
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are particularly sensitive to the initial conditions. Tracking this error can be used

as a metric for how trustworthy the results of numerical integration are for different

scenarios.

2.8 Equilibrium Solutions

Searching for particular solutions for the CR3BP equations of motion (equations

(49)-(51)) by examining the system when the first and second derivatives are equal

to zero leads to five constant equilibrium solutions in the rotating frame. As stated

earlier, the equilibrium solutions, libration points, or Lagrange points are the locations

of balanced gravitational forces in the rotating frame where the attractive forces of 𝑃1

and 𝑃2 are equal to the centripetal force of 𝑃3 as it rotates with the primaries [1,25].

As observed from the rotating frame, each of the five libration points (𝐿1 through

𝐿5) are stationary, with zero velocity and acceleration. If 𝑃3 were to be placed with

zero initial velocity in the rotating frame exactly at the location of any of these

points, 𝑃3 would theoretically stay at that position with zero relative motion in the

rotating system [1, 25]. The first three points are collinear with the primaries on

the 𝑥-axis of the rotating frame, and the last two points, the triangular points, have

symmetric positions off the 𝑥-axis that form equilateral triangles with the primaries.

The locations of 𝐿1 through 𝐿5 in the rotating frame of the Earth-Moon system are

indicated in Figure 9. Note that although five libration points are found in each

system evaluated in the CR3BP, this investigation focuses on the equilibrium points

in the Earth-Moon CR3BP.

The mathematical conditions for each equilibrium point in any CR3BP system

include having zero velocity and zero acceleration in the rotating frame, and ∇⃗𝑈* =

0⃗ [1, 25]. To solve for the exact libration point locations of the triangular points,

recall the EOMs defined in terms of partial derivatives of the pseudopotential in
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Earth Moon 

60° 

60° 60° 

Figure 9. Earth-Moon CR3BP Libration Point Locations in Barycentric Rotating
Frame.

equations (49)-(51). Note that because the coefficients for 𝑧 in the 𝑧-partial of the

pseudopotential (equation (51)) are nonzero, 𝑧 must be zero for each libration point.

Therefore, all of the equilibrium solutions are fixed in the 𝑥-𝑦 plane. Starting with

the 𝑦-component equation, each component of the pseudopotential function is set

equal to zero and constant coordinates for each equilibrium solution are computed.

Setting equation (50) equal to zero yields 𝑦 = 0, true for each of the three collinear

points, and 𝑦𝐿4,5 = ±
√
3
2
, where the positive value corresponds to 𝐿4, and the negative

corresponds to 𝐿5 [1]. Solving for the 𝑥-coordinates for the triangular points, 𝑦𝐿4,5

is substituted into equation (49) and set to zero, resulting in 𝑥𝐿4,5 = 1
2
− 𝜇. One

way to determine the 𝑥-coordinates of the collinear libration points in the barycentric

rotating frame is through an iterative scheme. Each location is defined in terms of a

variable, 𝛾𝑖 defining the 𝐿1, 𝐿2, and 𝐿3 locations from the nearest primary, illustrated

and defined in Figure 10.
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Figure 10. Earth-Moon CR3BP Libration Point Locations in Barycentric Rotating
Frame with Associated Distances from the Primaries.

From the equilibrium conditions for each point, 𝑥̈ = 𝑦 = 𝑧 = 𝑥̇ = 𝑦̇ = 𝑧̇ = 0 and

from the analysis above, 𝑧𝐿1,2,3 = 𝑦𝐿1,2,3 = 0. Substituting this information and the

𝑥-coordinate location in terms of 𝛾2 into equation (49), the equation is set equal to

zero, and the 𝑥-value for 𝐿2 is computed.

1− 𝜇

(1 + 𝛾2)2
+

𝜇

𝛾2
2

= 1− 𝜇+ 𝛾2, (56)

where

𝑥𝐿2 = 1− 𝜇+ 𝛾2. (57)

Equation (56) is solved iteratively using a Newton-Raphson algorithm with update

equation,

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥)

𝑓 ′(𝑥)
, (58)
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where 𝑥𝑛+1 is the next computed value for the 𝑥-coordinate, 𝑥𝑛 is the previous value,

𝑓(𝛾2) =
1− 𝜇

(1 + 𝛾2)2
+

𝜇

𝛾2
2

− 1 + 𝜇− 𝛾2, (59)

and

𝑓 ′(𝛾2) =
−2(1− 𝜇)

(1 + 𝛾2)3
− 2𝜇

𝛾3
2

− 1. (60)

In order to start the process, the Hill radius, 𝑟ℎ (similar to the “radius of the sphere

of activity” of 𝑚2, or the Roche limit when 𝑟 is the maximum permitted size of 𝑚2),

is the initial input for 𝑥𝑛, which is considered a decent initial guess for small 𝜇 [8].

𝑟𝐻 ≃
(︂

𝑚2

3𝑚1

)︂ 1
3

(61)

The Newton-Raphson iterative process continues until a solution value has converged

to within the given tolerance of 10−12 nondimensional units in this work, correspond-

ing to a accurate location to within 0.03844 cm. The 𝑥-coordinates of 𝐿1 and 𝐿3

are completed in similar processes. The comparison of the coordinates of the libra-

tion points in the barycentric rotating frame are listed for both the Earth-Moon and

Sun-Earth systems in Table 1.
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Equations (49)-(51) facilitate solving for the libration point locations depending

on the system mass ratio value, 𝜇. As 𝜇 increases (the closer 𝑃1 and 𝑃2 are in

mass), the distance from 𝑃2 to 𝐿1 and 𝐿2 increases, and the distance from 𝑃1 to

𝐿3 decreases. Table 1 shows the qualitative differences in coordinates for the Earth-

Moon, Sun-Earth, and equal primary mass systems of the CR3BP. Jacobi Constant

values also vary across the libration points. As seen in Table 1, a larger value of 𝐽𝐶

corresponds to a lower energy level. The table shows that energy levels increase as

𝐽𝐶𝐿1 > 𝐽𝐶𝐿2 > 𝐽𝐶𝐿3 > 𝐽𝐶𝐿4 = 𝐽𝐶𝐿5 for the Earth-Moon system, so the lowest

energy level of the five libration points corresponds with 𝐿1, and the highest energy

level is associated with 𝐿4 and 𝐿5.

The concept of a 𝐽𝐶 also establishes “forbidden regions” in the configuration space

where the spacecraft may not enter unless 𝐽𝐶 is changed [1,31]. The first application

of the concept of “forbidden regions” was used by Hill in 1878 when he proved that the

Moon is “permanently attached” to the Earth while obeying a constant 𝐽𝐶 through-

out its orbit about the Earth in the Sun-Earth-Moon CR3BP [15,31]. The “forbidden

regions” are defined by the boundaries where the square of the velocity changes sign,

or when 𝑣2 = 0 [31]. Inside the “forbidden region,” 𝑣2 < 0, so a spacecraft would be

required to have an imaginary speed, or a nonphysical value. The “accessible regions”

that allow spacecraft motion lie outside these boundaries, where 𝑣2 > 0. These “zero

velocity curves” (ZVCs) are observed as curves in the planar problem and surfaces in

the three dimensional case, termed “zero velocity surfaces” (ZVSs) [31]. For a given

𝐽𝐶, there is an infinite number of position component combinations (𝑥, 𝑦, and 𝑧)

that will satisfy equation (55). The ZVCs and ZVSs represented by equation (55)

encompass these solutions. An example of ZVCs corresponding to specific 𝐽𝐶 values

in the CR3BP for the Earth-Moon system are seen in Figure 11.

The curves and surfaces seem to evolve for various increasing or decreasing values
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(a) JC=3.3 (b) JC=JCL1=3.188341126426104 

(c) JC=3.179 (d) JC=3.1 

(e) JC=3.0 
Nondimensional x (e) JC=3.0 

Nondimensional x 
(f) JC=2.9 

Nondimensional x 

Figure 11. Zero Velocity Curves in Barycentric Rotating Frame of CR3BP for (a)
𝐽𝐶 = 3.3 < 𝐽𝐶𝐿1, (b) 𝐽𝐶 = 𝐽𝐶𝐿1 = 3.188341126426104, (c) 𝐽𝐶 = 3.179 < 𝐽𝐶𝐿1, (d) 𝐽𝐶 =
3.1 < 𝐽𝐶𝐿2, (e) 𝐽𝐶 = 3.0 < 𝐽𝐶𝐿3, and (f) 𝐽𝐶 = 2.9 < 𝐽𝐶𝐿4 5.
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of 𝐽𝐶. Hill was the first to work with the ZVCs and ZVSs, but it was Karl Bohlin

who first plotted them for the restricted problem in 1887 [31]. For large values of 𝐽𝐶

(𝐽𝐶 > 𝐽𝐶𝐿1 in the Earth-Moon system), or “low” energy levels, the ZVC accessible

regions constitute three distinct curves: one accessible region around the Earth, one

around the Moon, and the “exterior” region that lies outside the “forbidden region”

(seen in Figure 11 (a)). As the 𝐽𝐶 decreases, the ZVCs near the Earth and Moon

regions increase in size and the outer curve of the “forbidden region” decreases. When

𝐽𝐶 = 𝐽𝐶𝐿1 , the curves near the primaries meet exactly at 𝐿1 (Figure 11 (b)). As

the 𝐽𝐶 decreases further (or as energy level increases), the 𝐿1 “gateway” opens,

and a spacecraft starting its trajectory within the interior Earth region of the ZVCs

may pass through the 𝐿1 “gateway” and travel around the Moon region, but the

spacecraft will never escape the vicinity of the Earth-Moon system by crossing the

ZVC boundary without a change in 𝐽𝐶 (or energy level) (Figure 11 (c)). Similarly,

when 𝐽𝐶 < 𝐽𝐶𝐿2 , the 𝐿2 “gateway” creates an opening between the “interior” region

of the primaries to the “exterior” region beyond the ZVC “forbidden region,” allowing

a spacecraft to depart the vicinity of the Earth and Moon (Figure 11 (d)). As the

𝐽𝐶 decreases further, the “gateways” to 𝐿3 (Figure 11 (e)) and eventually 𝐿4 and 𝐿5

become accessible (Figure 11 (f)). As the 𝐽𝐶 decreases lower than 𝐽𝐶𝐿4 = 𝐽𝐶𝐿5 , the

evolving curves disappear from the plane, and motion within the plane is no longer

bounded. In general, there may still be “forbidden regions” defined by symmetric

ZVSs above and below the plane.

2.9 Symmetry Properties

Displaying information in the rotating frame of the CR3BP reveals two symmetry

properties in the problem, which prove to be useful from a design standpoint. The first

symmetry is seen about the 𝑥-𝑦 plane (or the plane of the primaries’ motion) [1]. If a
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solution trajectory to the CR3BP EOMs (equations (49)-(51)) contains a state of the

form: [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) 𝑥̇(𝑡) 𝑦̇(𝑡) 𝑧̇(𝑡)]𝑇 , then another solution exists below the plane of

the primaries, with state: [𝑥(𝑡) 𝑦(𝑡) −𝑧(𝑡) 𝑥̇(𝑡) 𝑦̇(𝑡) −𝑧̇(𝑡)]𝑇 , and the same follows for

all points along the trajectory. The second property is an inherent symmetry in time

and also the 𝑥-𝑧 plane [1]. In practice, this means that if there is a solution in forward

(positive) time and of the form [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) 𝑥̇(𝑡) 𝑦̇(𝑡) 𝑧̇(𝑡)]𝑇 , then the EOMs

also yield a solution of the form [𝑥(−𝑡) − 𝑦(−𝑡) 𝑧(−𝑡) − 𝑥̇(−𝑡) 𝑦̇(−𝑡) − 𝑧̇(−𝑡)]𝑇 in

negative time. These symmetries are commonly exploited when searching for periodic

solutions. Observing this property, Roy states a “Mirror Theorem”:

If 𝑛 point masses are acted upon by their mutual gravitational forces
only, and at a certain epoch each radius vector from the center of mass
of the system is perpendicular to every velocity vector, then the orbit of
each mass after that epoch is a mirror image of its orbit prior to that
epoch. Such a configuration of radius and velocity vectors is called a
mirror configuration [33].

He explains that the second statement is a corollary to the first, and if the 𝑛 point

masses are only moving according to their mutual gravitational forces, and if a mirror

configuration occurs at two separate times along the path, the trajectory is periodic

[33].

As an example of one practical application using a symmetry property, a mission

designer can compute a periodic orbit in the planar CR3BP that is symmetric in the

𝑥-𝑦 plane by the second symmetry property mentioned above. A targeting scheme

may utilize an algorithm that will integrate a solution with initial conditions with one

perpendicular crossing on the 𝑥-axis until another perpendicular crossing of the 𝑥-axis

is reached. Once the targeting scheme converges on a solution for the “top” half of

the orbit, the symmetric properties of the CR3BP show that the “bottom” half of the

periodic orbit is the mirror image of the “top” over the 𝑥-axis. This ability to reflect
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a converged solution from a numerical simulation allows for shorter integration time,

convenient both for simulations with longer computational times and for decreasing

the numerical error during integration.

2.10 Motion Near the Equilibrium Points

While an analytical solution is not available for the CR3BP, a linear stability

analysis can be useful for finding an approximate solution near an equilibrium point

or a specific trajectory as a reference [1,25]. While exact solutions cannot be yielded,

examining linearized equations with small perturbations may give information about

how the nonlinear system behaves [1,25]. The stability of the solutions gives indication

of the “flow” in the vicinity of the references and the boundedness of the motion

[1, 25, 34]. To characterize the motion near the equilibrium solutions of the CR3BP,

the variational equations of motion are defined. Recall equations (49)-(51), describing

a nonlinear, autonomous, continuous-time system. In general, these EOMs may be

written

˙⃗
𝑋 = 𝑓(𝑋⃗, 𝑡), (62)

where 𝑓 is a smooth function that defines a vector field in R𝑛. A nearby trajectory

solution (𝑋⃗(𝑡)) is equal to some reference solution (𝑋⃗
*
(𝑡)) plus a small variation

from that reference (𝛿𝑋⃗(𝑡)), or 𝑋⃗(𝑡) = 𝑋⃗
*
(𝑡) + 𝛿𝑋⃗(𝑡). The method of variation

used in this analysis uses isochronous correspondence, meaning same “time” [1]. This

method computes a variation that gives a solution, 𝑋⃗(𝑡), occurring at the same time,

𝑡, at which the state, 𝑋⃗
*
(𝑡), occurs on the reference trajectory, illustrated in Figure

12 [1].
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Figure 12. Notional Variation of a Nearby Trajectory with Respect to a Reference
Trajectory by Isochronous Correspondence.

Perturbing the original state at the initial time (𝑡 = 0 = 𝑡0), the reference solution

at the initial time is of the form 𝑋⃗0 = [𝑥0(𝑡) 𝑦0(𝑡) 𝑧0(𝑡) 𝑥̇0(𝑡) 𝑦̇0(𝑡) 𝑧̇0(𝑡)]
𝑇 , with small

perturbations, 𝜁(𝑡), 𝜂(𝑡), and 𝜉(𝑡). This yields the nearby solutions:

𝑥(𝑡) = 𝑥0(𝑡) + 𝜉(𝑡) (63)

𝑦(𝑡) = 𝑦0(𝑡) + 𝜂(𝑡) (64)

𝑧(𝑡) = 𝑧0(𝑡) + 𝜁(𝑡) (65)

The variational equations of motion are derived by inserting the perturbed solu-

tions into the equations of motion and evaluating at the reference solution. Since the

perturbations are assumed to be small, the RHS of each equation is expanded linearly

using a first-order Taylor Series Approximation [35], giving the result:

𝑥̈0(𝑡)+𝜉(𝑡)−2𝑦̇0(𝑡)−2𝜂̇ =
𝜕𝑈*

𝜕𝑥

⃒⃒⃒⃒
𝑋⃗0

+
𝜕2𝑈*

𝜕𝑥2

⃒⃒⃒⃒
𝑋⃗0

𝜉+
𝜕2𝑈*

𝜕𝑥𝜕𝑦

⃒⃒⃒⃒
𝑋⃗0

𝜂+
𝜕2𝑈*

𝜕𝑥𝜕𝑧

⃒⃒⃒⃒
𝑋⃗0

𝜁+ · · · (66)

𝑦0(𝑡)+𝜂(𝑡)+2𝑥̇0(𝑡)+2𝜉 =
𝜕𝑈*

𝜕𝑦

⃒⃒⃒⃒
𝑋⃗0

+
𝜕2𝑈*

𝜕𝑦𝜕𝑥

⃒⃒⃒⃒
𝑋⃗0

𝜉+
𝜕2𝑈*

𝜕𝑦2

⃒⃒⃒⃒
𝑋⃗0

𝜂+
𝜕2𝑈*

𝜕𝑦𝜕𝑧

⃒⃒⃒⃒
𝑋⃗0

𝜁+ · · · (67)

𝑧0(𝑡) + 𝜁(𝑡) =
𝜕𝑈*

𝜕𝑧

⃒⃒⃒⃒
𝑋⃗0

+
𝜕2𝑈*

𝜕𝑧𝜕𝑥

⃒⃒⃒⃒
𝑋⃗0

𝜉 +
𝜕2𝑈*

𝜕𝑧𝜕𝑦

⃒⃒⃒⃒
𝑋⃗0

𝜂 +
𝜕2𝑈*

𝜕𝑧2

⃒⃒⃒⃒
𝑋⃗0

𝜁 + · · · , (68)
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where 𝜕2

𝜕𝑥𝜕𝑦
= 𝜕2

𝜕𝑦𝜕𝑥
, 𝜕2

𝜕𝑦𝜕𝑧
= 𝜕2

𝜕𝑧𝜕𝑦
, and 𝜕2

𝜕𝑥𝜕𝑧
= 𝜕2

𝜕𝑧𝜕𝑥
since the system is continuous,

and each expression also includes higher order terms that are neglected in this linear

approximation. Also note that 𝑈*(𝑡), 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are all functions of time in

general, but the time terms, “(𝑡),” are left off for simplicity from this point forward

in this investigation. The reference terms (those corresponding with the original so-

lution) on the LHS and the first term in the linear expansion on the RHS in each

equation are equivalent by the original equations of motion. Using the same abbre-

viation for the partial derivative of 𝑈* as in equations (49)-(51) in Section 2.7 and

simplifying further, the linearized variational equations of motion for small perturba-

tions, evaluated at a reference solution are below:

𝜉 − 2𝜂̇ = 𝑈*
𝑥𝑥|𝑋0

𝜉 + 𝑈*
𝑥𝑦|𝑋0

𝜂 + 𝑈*
𝑥𝑧|𝑋0

𝜁 (69)

𝜂 + 2𝜉 = 𝑈*
𝑥𝑦|𝑋0

𝜉 + 𝑈*
𝑦𝑦|𝑋0

𝜂 + 𝑈*
𝑦𝑧|𝑋0

𝜁 (70)

𝜁 = 𝑈*
𝑥𝑧|𝑋0

𝜉 + 𝑈*
𝑦𝑧|𝑋0

𝜂 + 𝑈*
𝑧𝑧|𝑋0

𝜁 (71)

Equations (69)-(71) are the variational EOMs that represent the linearized motion

of perturbations near a reference solution. Since the perturbations are assumed to

be small, these EOMs are also a decent approximation of the nonlinear dynamical

“flow” near the reference [25, 32]. The following methodology for examining the

linear system is based on development by Geisel [25,32]. Since solutions to the EOMs

are expressed in the form [𝑥 𝑦 𝑧 𝑥̇ 𝑦̇ 𝑧̇]𝑇 = [𝑟⃗ 𝑣⃗]𝑇 , where position 𝑟⃗ = [𝑥 𝑦 𝑧]𝑇 ,

and velocity 𝑣⃗ = [𝑥̇ 𝑦̇ 𝑧̇]𝑇 , the variations of position and velocity may be expressed

𝛿𝑋⃗ = [𝛿𝑟⃗ 𝛿𝑣⃗]𝑇 = [𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿𝑥̇ 𝛿𝑦̇ 𝛿𝑧̇]𝑇 = [𝜉 𝜂 𝜁 𝜉 𝜂̇ 𝜁]𝑇 [32]. The variational equations

can then be written in first-order differential form of a linear system,

𝛿
˙⃗
𝑋 = 𝐴(𝑡)𝛿𝑋⃗, (72)
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where 𝐴(𝑡), defined below in equation (73), is the Jacobian matrix of 𝑓 , and in

general, is not constant [25,32].

𝐴(𝑡) =

⎡⎢⎣ 03×3 𝐼3×3

𝐵 Ω

⎤⎥⎦ , (73)

where 03×3 is the 3× 3 null matrix, 𝐼3×3 is the 3× 3 identity matrix,

𝐵 =

⎡⎢⎢⎢⎢⎣
𝑈*
𝑥𝑥 𝑈*

𝑥𝑦 𝑈*
𝑥𝑧

𝑈*
𝑥𝑦 𝑈*

𝑦𝑦 𝑈*
𝑦𝑧

𝑈*
𝑥𝑧 𝑈*

𝑦𝑧 𝑈*
𝑧𝑧

⎤⎥⎥⎥⎥⎦ , (74)

and,

Ω =

⎡⎢⎢⎢⎢⎣
0 2 0

−2 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ . (75)

Defining the reference solution as an equilibrium solution of the CR3BP, a nearby

solution is described,

𝑋⃗ = 𝑋⃗𝑒𝑞 + 𝛿𝑋⃗, (76)

where 𝑋⃗𝑒𝑞 represents the state vector at the libration point. Linearizing the system

with reference to the equilibrium point gives equation (72), where

𝐴 =

⎡⎢⎣ 03×3 𝐼3×3

𝐵𝑒𝑞 Ω

⎤⎥⎦ (77)
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and,

𝐵𝑒𝑞 =

⎡⎢⎢⎢⎢⎣
𝑈*
𝑥𝑥0 𝑈*

𝑥𝑦0 0

𝑈*
𝑥𝑦0 𝑈*

𝑦𝑦0 0

0 0 𝑈*
𝑧𝑧0

⎤⎥⎥⎥⎥⎦ , (78)

where 𝑈*
𝑝𝑞0 represents the second partial derivative evaluated at the equilibrium point

[30]. Note that in this special case, the 𝐴 matrix is a constant matrix [8]. The 𝐴

matrix is used to calculate a characteristic equation for the system, from which the

eigenvalues are examined to determine stability [13, 25]. Since each libration point

lies within the 𝑥-𝑦 plane (𝑧𝑖 = 0), 𝑈*
𝑥𝑧0 = 𝑈*

𝑧𝑥0 = 𝑈*
𝑦𝑧0 = 𝑈*

𝑧𝑦0 = 0 and 𝑈*
𝑧𝑧0 < 0. The

linear variational equations are written,

𝜉 − 2𝜂̇ = 𝑈*
𝑥𝑥0𝜉 + 𝑈*

𝑥𝑦0𝜂 (79)

𝜂 + 2𝜉 = 𝑈*
𝑦𝑥0𝜉 + 𝑈*

𝑦𝑦0𝜂 (80)

𝜁 = 𝑈*
𝑧𝑧0𝜁 (81)

It is clear from the equations above that for the linearized system, the in-plane and

out-of-plane motion is decoupled for each equilibrium point. Note that in general, no

claims may be made about the motion for the nonlinear system.

Meirovitch defines the conditions for stability that can be applied to characterize

the equilibrium points (and motion near them) in this linear stability analysis. He

states, “If all the characteristic exponents associated with [equation (72)] possess

negative real parts, then the periodic [or equilibrium] solution of the complete system

[equation (62)] is asymptotically stable” [13]. The characteristic exponents are the

eigenvalues of the 𝐴 matrix for the system, or the roots of the characteristic equation.

He continues, “If there is at least one characteristic exponent associated with [equation

(72)] with a positive real part, then the periodic [or equilibrium] solution of the
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complete system [equation (62)] is unstable” [13]. The definition goes on to explain

that if roots are purely imaginary, oscillatory motion is exhibited and the solution is

marginally stable [13, 25].

If the system contains at least one root that is positive real and at least one

that is negative real, the solution is unstable by Lyapunov stability, but is commonly

said to be “nonstable” and characterized as a saddle point in terms of the “flow”

of stability. Isochronous correspondence between a solution and its reference as it is

used here leads to this definition of Lyapunov stability, which is just one of numerous

stability definitions that could be applied to this analysis [1]. The characteristic

equation for the out-of-plane motion produces pure imaginary roots, associated with

marginal stability. Since 𝑈*
𝑧𝑧0 is a negative constant, the out-of-plane motion is a

simple harmonic oscillator in the 𝑧 direction in the form 𝜁 + 𝜔2𝜁 = 0. The period of

oscillation for each point can be calculated using:

𝑇 =
2𝜋√︀
‖𝑈*

𝑧𝑧0‖
, (82)

where, in fact, this is exactly 2𝜋 for the triangular points (𝐿4 and 𝐿5). The out-of-

plane motion is characterized as a marginally stable, 2-D center [1, 25, 32]. Though

the equilibrium points are characterized as marginally stable in terms of their out-of-

plane behavior in the linear system, a prediction for the stability of the points in the

nonlinear system may not be made [1]. To conduct a stability analysis of in-plane

motion near the equilibrium points, 𝑑𝑒𝑡(𝜆𝐼 −𝐴𝑒𝑞) = 0 is evaluated for 𝛿
˙⃗
𝑋 = 𝐴𝑒𝑞𝛿𝑋⃗

to get the characteristic equation of the linearized system:

𝜆4 + (4− 𝑈*
𝑥𝑥 − 𝑈*

𝑦𝑦)𝜆
2 + (2𝑈*

𝑥𝑦 − 𝑈*
𝑦𝑥)𝜆+ (𝑈*

𝑥𝑥𝑈
*
𝑦𝑦 − 𝑈*

𝑥𝑦
2) = 0, (83)

where the second term is zero since 𝑈*
𝑥𝑦 = 𝑈*

𝑦𝑥. Considering the collinear libration
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points, 𝐿1, 𝐿2, and 𝐿3, note that 𝑦𝐿𝑖 = 𝑧𝐿𝑖 = 0, 𝑈*
𝑥𝑥 > 0, and 𝑈*

𝑦𝑦 < 0. For simplicity,

𝜆 = ±Λ
1
2 ,

𝛽1 = 2−
(︂
𝑈*
𝑥𝑥 + 𝑈*

𝑦𝑦

2

)︂
, (84)

and,

𝛽2
2 = −𝑈*

𝑥𝑥𝑈
*
𝑦𝑦 > 0 (85)

are defined. The quadratic formula then gives,

Λ1 = −𝛽1 + (𝛽2
1 + 𝛽2

2)
1
2 > 0 (86)

and,

Λ2 = −𝛽1 − (𝛽2
1 + 𝛽2

2)
1
2 < 0, (87)

which implies that 𝜆1,2 = ±
√
Λ1 represent the real roots of the characteristic equation

(equation (83)) and 𝜆3,4 = ±
√
Λ2 represent the imaginary roots. Solutions then take

the typical form for ordinary linear differential equations [36]:

𝜉 =
4∑︁

𝑖=1

𝑀𝑖𝑒
𝜆𝑖𝑡 (88)

𝜂 =
4∑︁

𝑖=1

𝑁𝑖𝑒
𝜆𝑖𝑡 (89)

In general, there is always one term with a positive real root in the exponent

that indicates an unbounded value for 𝜉 and 𝜂 as 𝑡 → 8. This ascertains that

the solution is unstable [1, 13, 25]. Since this analysis characterizes the linearized

system, only under certain conditions can the stability of the nonlinear system be

made. The sufficient condition for determining if the nonlinear system is locally

asymptotically stable (with respect to that equilibrium point) is met if the linear

system is classified as asymptotically stable by observing the eigenvalues with all
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negative real parts [1]. If any of the real parts are positive, the equilibrium point is

classified unstable [1]. The stability exponents for Hamiltonian systems such as this

one also occur as positive/negative pairs, so unstable and purely imaginary values are

the only cases permitted [20]. If some of the roots are zeros or are purely imaginary,

no stability claims can be made about the nonlinear system. In this analysis, the

indication of instability also holds true for the nonlinear system. Also note that the

coefficients 𝑀𝑖 and 𝑁𝑖 are not independent, but related by 𝛼𝑖, defined below:

𝑁𝑖 = (
𝜆2
𝑖 − 𝑈*

𝑥𝑥

2𝜆𝑖

)𝑀𝑖 = 𝛼𝑖𝑀𝑖 (90)

The initial conditions can then be written,

𝜉0 =
4∑︁

𝑖=1

𝑀𝑖𝑒
𝜆𝑖𝑡0 (91)

𝜉0 =
4∑︁

𝑖=1

𝜆𝑖𝑀𝑖𝑒
𝜆𝑖𝑡0 (92)

𝜂0 =
4∑︁

𝑖=1

𝛼𝑖𝑀𝑖𝑒
𝜆𝑖𝑡0 (93)

𝜂̇0 =
4∑︁

𝑖=1

𝜆𝑖𝛼𝑖𝑀𝑖𝑒
𝜆𝑖𝑡0 (94)

and the initial conditions associated with the 𝑁𝑖 terms are of similar form. It is also

possible to express the coefficients 𝑀𝑖 and 𝑁𝑖 in terms of these initial conditions [1].

By defining stability by the presence of an unbounded term in the solution, the

collinear equilibrium points themselves are “unstable” [1,13]. However, the motion in

the vicinity of each point may exhibit interesting characteristics or “modes.” These

modes are associated with the characterization of subspaces within the 6-D dynamical

“flow.” The initial conditions may be manipulated in such a way as to suppress the
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unbounded behavior and only generate bounded motion [1, 25]. Notice the 𝑀1 and

𝑀2 coefficients are associated with the positive real exponents, 𝜆1 and 𝜆2, which

express the unstable motion [1, 13]. The initial conditions may then be chosen such

that 𝑀1 = 𝑀2 = 0, and the resulting particular solutions contain only 𝑀3 and

𝑀4, which exhibit oscillatory behavior in the linear model [1, 13]. These different

modes are connected to the stable and unstable subspaces associated with the phase

space “flow.” In the CR3BP, each collinear libration point is characterized as a

nonstable 2-D center × 2-D center × 2-D saddle (2-D center × 2-D saddle in the

planar CR3BP) [13,25,32].

Recall the characteristic equation (equation (83)) and consider the triangular equi-

librium points. The 𝑥 and 𝑦 positions of 𝐿4 and 𝐿5 are,

𝑥𝐿4,5 =
1

2
− 𝜇 (95)

and

𝑦𝐿4,5 = ±
√
3

2
. (96)

This results in the simplified characteristic equation,

Λ2 + Λ+
27

4
𝜇(1− 𝜇) = 0. (97)

Defining 𝑔 = 1− 27𝜇(1− 𝜇),

Λ =
1

2
−1±√

𝑔, (98)

which leads to the linear stability of 𝐿4 and 𝐿5 with a dependence on the mass ratio of

the system, 𝜇. When 0 < 𝑔 ≤ 1, the mass ratio is in the range 0 < 𝜇 ≤ 𝜇0, where 𝜇0

is the critical mass ratio value, and the triangular points are marginally stable [1,25].

This leads to imaginary roots of the characteristic equation, and the linearized motion
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is bounded [1,25]. This 4-D center characterization is a superposition of two harmonic

oscillators with different frequencies [1,25]. Similar to the collinear points, the proper

choice of initial conditions may excite one frequency and suppress the other to achieve

a certain desired result. Periodic orbits about these points may also be obtained when

both frequencies are present if the ratio of their values is a rational number for some

𝜇 [1, 25]. When 𝑔 = 0, 𝜇 = 𝜇0 =
(1−

√
23
27

)

2
= 0.0385. If a system has this mass ratio,

the two frequencies are equal, and periodic motion is exhibited in the linear model.

Lastly, when 𝑔 < 0, 𝜇 > 𝜇0, and the resultant roots are complex conjugates [1, 25].

This leads to unbounded behavior in the linear system, and it can then be claimed

that both the linear and nonlinear systems are unstable [1, 25]. Notice that for most

systems in the solar system, including the Earth-Moon CR3BP, a triangular point is

characterized as a marginally stable 2-D center × 2-D center × 2-D center (or a 6-D

center). A notable exception of this observation is seen in the Pluto-Charon CR3BP,

in which the triangular points are classified as unstable.

2.11 State Transition Matrix

To examine a trajectory in the CR3BP, a set of initial conditions is selected,

and the equations of motion are numerically integrated for a selected amount of

time to generate a specific simulation for those conditions. It is possible that the

integrated trajectory shown by this solution does not have the desired characteristics

for the mission design. While that simulation displays the trajectory in question,

there is no information available about nearby solutions. To examine how nearby

solutions behave, a mission planner may try a selection of nearby initial conditions,

but this would lead to an infinite number of simulations to numerically integrate and

observe in the total phase space. The standard way to obtain information about the

nearby trajectories is by utilizing the variational equations and the State Transition

66



Matrix (STM). This method assumes that the integrator used is reliable and that the

astrodynamicist has some insight into how the nearby solutions act [20]. The STM,

also called the “guidance matrix” or “sensitivity matrix,” determines how sensitive

the final trajectory is to the initial conditions input to the system [20,25].

Considering the variational equations of motion in equation (72), notice that be-

cause this is a linear set of equations, the addition of any two solutions to the set

is also a solution, and the general solution is constructed from a fundamental set of

solutions, 𝜑⃗𝑖(𝑡). Contained in this fundamental solution vector are 𝑛 independent

solutions to equation (72) with initial conditions such that 𝜑𝑖𝑗(𝑡0) = 𝛿𝑖𝑗, where 𝛿𝑖𝑗

is the Kroenecker delta. A solution satisfying a general set of initial conditions is

represented by a scaled combination of solutions,

𝛿𝑋⃗(𝑡) =
𝑛∑︁

𝑗=1

𝜑⃗𝑗(𝑡)𝛿𝑥𝑗(𝑡0). (99)

A solution function at the initial time, 𝑡0, with initial conditions of the form in equa-

tion (99) is also a solution at some other time, 𝑡. Since equation (99) has the correct

initial conditions for any nearby trajectory, it is the general solution to equation (72).

Replacing equation (99) with a matrix formulation, the STM, Φ(𝑡, 𝑡0), is defined to

be a square matrix with the 𝑛 independent solutions, 𝜑⃗𝑖, as columns. With initial

conditions,

Φ(𝑡0, 𝑡0) = 𝐼, (100)

Φ satisfies the differential equation,

Φ̇(𝑡, 𝑡0) = 𝐴(𝑡)Φ(𝑡, 𝑡0), (101)
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which is the governing equation for the STM. Equation (99) can then be written

𝛿𝑋⃗(𝑡) = Φ(𝑡, 𝑡0)𝛿𝑥(𝑡0), (102)

which is also the general solution to equation (72). The STM also has two useful

properties:

Φ(𝑡2, 𝑡0) = Φ(𝑡2, 𝑡1)Φ(𝑡1, 𝑡0) (103)

and

Φ(𝑡0, 𝑡1) = Φ−1(𝑡1, 𝑡0) (104)

The STM is mathematically defined as the derivative of the state solution at a given 𝑡

with respect to the initial conditions at 𝑡0, or the Jacobian matrix of the solution [8].

In terms of the partial derivatives, the STM is defined:

Φ(𝑡, 𝑡0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥(𝑡)
𝜕𝑥(𝑡0)

𝜕𝑥(𝑡)
𝜕𝑦(𝑡0)

𝜕𝑥(𝑡)
𝜕𝑧(𝑡0)

𝜕𝑥(𝑡)
𝜕𝑥̇(𝑡0)

𝜕𝑥(𝑡)
𝜕𝑦̇(𝑡0)

𝜕𝑥(𝑡)
𝜕𝑧̇(𝑡0)

𝜕𝑦(𝑡)
𝜕𝑥(𝑡0)

𝜕𝑦(𝑡)
𝜕𝑦(𝑡0)

𝜕𝑦(𝑡)
𝜕𝑧(𝑡0)

𝜕𝑦(𝑡)
𝜕𝑥̇(𝑡0)

𝜕𝑦(𝑡)
𝜕𝑦̇(𝑡0)

𝜕𝑦(𝑡)
𝜕𝑧̇(𝑡0)

𝜕𝑧(𝑡)
𝜕𝑥(𝑡0)

𝜕𝑧(𝑡)
𝜕𝑦(𝑡0)

𝜕𝑧(𝑡)
𝜕𝑧(𝑡0)

𝜕𝑧(𝑡)
𝜕𝑥̇(𝑡0)

𝜕𝑧(𝑡)
𝜕𝑦̇(𝑡0)

𝜕𝑧(𝑡)
𝜕𝑧̇(𝑡0)

𝜕𝑥̇(𝑡)
𝜕𝑥(𝑡0)

𝜕𝑥̇(𝑡)
𝜕𝑦(𝑡0)

𝜕𝑥̇(𝑡)
𝜕𝑧(𝑡0)

𝜕𝑥̇(𝑡)
𝜕𝑥̇(𝑡0)

𝜕𝑥̇(𝑡)
𝜕𝑦̇(𝑡0)

𝜕𝑥̇(𝑡)
𝜕𝑧̇(𝑡0)

𝜕𝑦̇(𝑡)
𝜕𝑥(𝑡0)

𝜕𝑦̇(𝑡)
𝜕𝑦(𝑡0)

𝜕𝑦̇(𝑡)
𝜕𝑧(𝑡0)

𝜕𝑦̇(𝑡)
𝜕𝑥̇(𝑡0)

𝜕𝑦̇(𝑡)
𝜕𝑦̇(𝑡0)

𝜕𝑦̇(𝑡)
𝜕𝑧̇(𝑡0)

𝜕𝑧̇(𝑡)
𝜕𝑥(𝑡0)

𝜕𝑧̇(𝑡)
𝜕𝑦(𝑡0)

𝜕𝑧̇(𝑡)
𝜕𝑧(𝑡0)

𝜕𝑧̇(𝑡)
𝜕𝑥̇(𝑡0)

𝜕𝑧̇(𝑡)
𝜕𝑦̇(𝑡0)

𝜕𝑧̇(𝑡)
𝜕𝑧̇(𝑡0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (105)

The equations of variation (equation (101)) can be numerically integrated simul-

taneously with the nonlinear EOMs (equation (62)) at every time step, and a time

history of the elements in Φ(𝑡, 𝑡0) is generated [20, 25]. Since there is no closed-form

analytical solution to the CR3BP, observing the system response to a set of initial con-

ditions through the STM is valuable. Targeting algorithms and continuation schemes

utilize the STM in searching for trajectories near a reference solution.

Another useful characteristic of the STM is that because of its initial conditions

68



(equation (100)), the determinant of the STM is exactly equal to one. Liouville’s

theorem validates that it should also remain equal to one for all time as the STM is

integrated simultaneously with the EOMs. The theorem describes the motion of an

element of the phase space as a volume element of a fluid; in general, the element

changes shape, but has a constant volume, and the nearby particles remain close [37].

Liouville’s theorem implies that the phase space of the CR3BP is incompressible,

so the determinant of the STM should always be equal to one. The constant unity

determinant of the STM gives another metric (along with 𝐽𝐶) to track the error in

a numerical simulation.

2.12 Periodic Orbits

Famously known as his conjecture on periodic orbits, Poincaré stated: “If a partic-

ular solution of the restricted problem is given, one can always find a periodic solution

(with period which might be very long) such that the difference between these two

solutions is as small as desired for any length of time” [1]. His conjecture suggests

using a periodic orbit as a reference orbit [1]. First order linear approximations for pe-

riodic orbits near the non-stable, collinear libration points are used to obtain families

of these orbits. A periodic orbit in the CR3BP is never found in a singular isolated

occurrence; there are also other members of an orbital “family” nearby. This is due

to the nature of the eigenvalues of the STM for one revolution of a periodic orbit:

two eigenvalues are equal to one, which is associated with the periodicity of the orbit

and an indication that there are other orbits nearby that have similar characteristics.

Near the collinear libration points, orbit families with different characteristics

such as Lyapunov, Halo, Vertical, and Axial families may be generated using various

targeting algorithms, which will be discussed further in Section 3.1 [38]. Each orbit

in the respective grouping of orbits is a “member” of the family and is in some way

69



related to the previous family member [25, 39, 40]. Each orbit is generated from the

last, so the next orbit somehow resembles the last in some or all parts of the phase

space. Stability of a single orbit depends on the eigenvalues of the monodromy matrix,

or the STM of the orbit for one complete period [25,39,40]. Stability trends are seen

as family members are examined, and a bifurcation occurs where a change in stability

is observed between family members [25,39]. The Jacobi Constant also changes with

each family member, and the period of a specific orbit in the family can be unique

for each member. The periodic orbit families may be relatively easily generated with

a continuation algorithm, and the information about each family member may be

recorded for the purpose of choosing a specific family member depending on design

constraints or specific needs of a mission. In order to exploit the properties of certain

periodic orbits in the CR3BP, a stability analysis is done to determine the types of

possible motion in the space. The eigenvalues associated with the monodromy matrix

provide the stability information for analysis [25,39,40]. While the linearized stability

analysis of an equilibrium point refers to a definition of isochronous correspondence

and characterization based on Lyapunov stability, the analysis of orbital stability in

this investigation uses normal correspondence, where the perturbed solution, 𝑋⃗(𝑡), is

defined in a direction exactly normal from the reference state, 𝑋⃗
*
(𝑡), on the reference

trajectory, depicted in Figure 13 [1].

Figure 13. Notional Variation of a Nearby Trajectory with Respect to a Reference
Trajectory by Normal Correspondence (Adapted from Szebehely [1]).

While normal correspondence is associated with orbital stability analysis, Floquet
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Theory gives a relation that lets an astrodynamicist treat the system in the same way

as with a Lyapunov stability analysis (see Section 2.10). Recall that the 𝐴 matrix is

in general time-varying, but it is a constant coefficient matrix when linearizing about

the equilibrium points [20]. In the case of linearizing about a periodic orbit, the 𝐴

matrix is periodic [20]. Floquet discovered the solution to the periodic coefficient

linear system, which gives stability information about the orbit similar to solving

the constant coefficient linearized equations about an equilibrium point [20]. Floquet

theory indicates that the STM can be written in the form:

Φ(𝑡, 0) = 𝐹 (𝑡)𝑒𝐽𝑡𝐹−1(0), (106)

where 𝐹 (𝑡) is a periodic matrix, and 𝐽 is a Jordan normal form matrix and usually

diagonal, where the diagonal elements are the system frequencies [20]. When describ-

ing a periodic orbit that starts and ends at the same point, 𝑡 = 𝑇 and 𝐹 (𝑇 ) = 𝐹 (0),

where 𝑇 is one orbital period. Inserting this information and rearranging equation

(106), the result is

𝑒𝐽𝑡 = 𝐹−1(0)Φ(𝑇, 0)𝐹 (0), (107)

which is an explicit statement that 𝐹 (0) is a constant matrix of the eigenvectors

corresponding to the monodromy matrix , Φ(𝑇, 0), from the definition of eigenvectors,

Φ(𝑡0 + 𝑇, 𝑡0)𝑣⃗𝑖(𝑡0) = 𝜆𝑖𝑣⃗𝑖(𝑡0). The statement in equation (107) also indicates that

𝜆𝑖 = 𝑒𝜔𝑖𝑡, (108)

which states that the eigenvalues, 𝜆𝑖 are related to 𝜔𝑖, the Poincaré exponents of 𝐽

(or the system frequencies). In order words, the Poincaré exponents may be treated

like the eigenvalues of a constant coefficient system. In general, for Hamiltonian sys-

tems without dissipation (such as this case), the only cases for a pair of 𝜔𝑖 are (1)
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positive/negative pure imaginary numbers or (2) positive/negative real numbers [20].

From the relation in equation (108), this indicates that the eigenvalues of the mon-

odromy matrix will occur in reciprocal pairs [1, 13, 20, 25, 32]. The linear system can

now be evaluated as a discrete time problem; instead of characterizing the eigenval-

ues based on if their locations are on the left or right side of the complex plane, the

characteristic multiplier values are evaluated based on if their locations are inside or

outside the unit circle. The monodromy matrix computed in an analysis of a 3-D

orbit possesses six eigenvalues. Two of these will be equal to one on the real axis

and on the unit circle (also with unit magnitude). These unity eigenvalues are as-

sociated with the periodicity of the orbit and also indicate marginal stability (a 2-D

center) [1, 13, 25].

For a periodic orbit in the spatial CR3BP, there is typically at least one posi-

tive/negative conjugate pair on the unit circle (each with unit magnitude), which is

associated with marginal stability (classified as a 2-D center). For the planar CR3BP,

there is one pair equal to one, and the other pair may be on the unit circle or on the

real axis. An eigenvalue that is outside the unit circle indicates instability, while an

eigenvalue inside the unit circle implies asymptotic stability. When one eigenvalue in

a pair lies inside the unit circle, and the other lies outside, this is associated with a

2-D saddle. In the spatial CR3BP, it is possible to observe a 2-D center x 2-D center x

2-D saddle (2-D center x 2-D saddle in the planar problem), which is referred to as an

unstable periodic orbit (UPO). A periodic orbit classified as a 6-D center is referred

to as a “stable” periodic orbit, though marginal stability is the best stability an orbit

can achieve through the linear analysis. The statements about nonlinear stability

conclusions based on the linear stability analysis when classifying the equilibrium

points also hold true for the stability of periodic orbits. Since marginal stability is

the “most” stable classification that an orbit may have, orbits that are asymptotically
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stable are not observed in the CR3BP. When the linear stability analysis of a periodic

orbit reveals marginally stable behavior, no claims on the stability of the orbit in the

nonlinear system can be made. When an orbit is classified as unstable or “nonstable”

in the linear stability analysis, this indicates that the orbit is also unstable in the

nonlinear system.

A bifurcation occurs when there is a change in stability examined while investi-

gating a larger group of orbits, or a family of the same type of orbit [38]. Another

type of orbit, or another family altogether, may result from a change of stability,

stemming from the closest orbit found near the bifurcation point. For example, as

the stability information is examined of the periodic “Lyapunov” orbit family about

the 𝐿1 equilibrium point (looking from the smallest to the largest members of the

family), a bifurcation is approached as one pair of characteristic multipliers (either

associated with the stable and unstable subspaces or the center subspace) approaches

±1 from the real axis or from along the unit circle. When this pair is exactly ±1,

this is possibly the intersection of two different families (a bifurcation point). There

are multiple continuation methods that exploit this observation to compute families

of orbits (see Section 3.2).

The exact location of bifurcation orbits can be approximated using continuation

and a method of bisections. This location is found by observing a change in eigen-

structure. One way this can happen is when a characteristic multiplier leaves the

unit circle and goes to the real axis (or comes to the unit circle from the real axis).

During a continuation process, this change in eigenstructure can occur between two

computed solutions. Consider the family of planar Lyapunov orbits around 𝐿1. The

initial state for exactly midway between these two solutions can be computed using

the lower of the two solution states surrounding the bifurcation solution where Δ𝑥

is a defined step size (Δ𝑥 = 0.0006 nondimensional units was typically used in this
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investigation) that moves along the 𝑥-axis,

𝑋⃗
𝑚𝑖𝑑𝑤𝑎𝑦

= 𝑋⃗
𝑙𝑜𝑤𝑒𝑟

+
Δ𝑥

2
· 𝑋⃗

𝑙𝑜𝑤𝑒𝑟
. (109)

The eigenstructure of the midway orbit is then observed to determine whether the

bifurcation solution is between 𝑋⃗
𝑙𝑜𝑤𝑒𝑟

and 𝑋⃗
𝑚𝑖𝑑𝑤𝑎𝑦

, or above 𝑋⃗
𝑚𝑖𝑑𝑤𝑎𝑦

. Redefining

the “lower” solution, the new midway state can be computed:

𝑋⃗
𝑚𝑖𝑑𝑤𝑎𝑦

= 𝑋⃗
𝑙𝑜𝑤𝑒𝑟

+
Δ𝑥

4
· 𝑋⃗

𝑙𝑜𝑤𝑒𝑟
. (110)

This process is continued until the bifurcation is detected to be sufficiently close, or

when the characteristic multiplier approaching a change in stability is within some

tolerance of ±1, where the step size is reduced by a factor of 2 with every prediction.

Since a bifurcation is a potential indication of the presence of another orbit family, a

perturbation in the direction of the suspected family member may give a successful

initial guess to target those orbits. The stability analysis of periodic orbits also leads

to structures in the phase space called invariant manifolds. The application of these

structures for use in mission design begins with the study of Dynamical Systems

Theory.

2.13 Dynamical Systems Theory

Dynamical Systems Theory (DST) presents a modern and potentially fuel-saving

set of tools for mission design in a multi-body environment. Different modes of dy-

namical “flow” can exist for a nonlinear system in a multi-body environment, like

the CR3BP. The phase space can be analyzed to evaluate the “flow” of trajectories

in the vicinity of points or bodies of interest [20]. In this study, invariant manifolds

associated with unstable periodic orbits around the Earth-Moon libration points are
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exploited to investigate favorable trajectory options near the Earth or equilibrium

points in the Earth-Moon system. An intersection in the full phase space of trajec-

tories on these manifolds present an opportunity for theoretically “free” (zero-Δ𝑉 )

transfers from one orbit to another. The Genesis spacecraft mission trajectory em-

ployed these methods [41]. The stable manifold of an unstable periodic orbit contains

the set of all possible trajectories that approach the unstable periodic orbit in infi-

nite time. The stable manifold associated with an unstable periodic orbit around the

Sun-Earth libration point between the Earth and the Sun, L1, was examined in the

Genesis mission design [41].

The present investigation also explores the use of unconventional transfers between

mission orbits using some of DST’s techniques. Libration point orbits (LPOs) are

studied to compute families of orbits and to provide potential starting and destination

points in some contingency options in test cases. Note the use of orbits about libration

points in the Earth-Moon and other systems is not currently considered of utmost

military importance; however, the concepts and tools used for complex dynamical

analysis for more prominent military missions can be investigated and showcased in

missions leading to and from orbits about libration points. Using periodic orbits

around libration points can give spacecraft on those particular trajectories a close-up

and consistent view of the closest primary body. Spacecraft traveling close to libration

point locations also may have the opportunity of utilizing the minimal (theoretically

“free”) Δ𝑉 transfers between stable and unstable invariant manifolds of unstable

periodic orbits.

The International Sun-Earth Explorer-3 (ISEE-3) was the first spacecraft with a

mission to travel to one of these LPOs. Launched in 1978, ISEE-3 went into orbit

around the 𝐿1 libration point of the Sun-Earth system where it investigated the

boundaries of the Earth’s magnetosphere and examined the structure of the solar
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wind near the Earth [42, 43]. Later, launched in 1995, the Solar and Heliospheric

Observatory (SOHO) traveled to the same point for an unobstructed view of the Sun

to study from its deep core to the outer corona and solar wind [44]. SOHO gives

up to three days notice for Earth-directed disturbances like Coronal Mass Ejections

(CMEs) and radiation storms [45]. The Advanced Composition Explorer (ACE)

also resides at the Sun-Earth 𝐿1 libration point, giving early warning of potentially

hazardous geomagnetic storms since its launch in 1997 [46]. As of 2009, the Planck

spacecraft orbits the Sun-Earth 𝐿2 libration point, looking into the cosmic microwave

background and giving the best view of the earliest moments in cosmic history [47].

The advantages of spacecraft in LPOs led to further study of lower-energy methods

for transfer. Hiten was the first spacecraft to demonstrate one of these lower-energy

trajectories as it passed by the Earth-Moon 𝐿4 and 𝐿5 libration points and completed

ten lunar fly-bys before orbiting around and landing on the Moon [48, 49]. In 1968,

Conley published a preliminary description of low-energy transfers in the Earth-Moon

system using orbits transiting near the collinear equilibrium points in the restricted

three-body problem [50].

Others took Conley’s work further, developing other useful tools in DST to de-

sign lower-energy transfers. There are many recent examples of research in this area.

Davis, Anderson, and Born specifically explored the mission design of a low-energy

transfer beginning in LEO, inserting onto a stable manifold trajectory of an LPO

in the Earth-Moon system to ultimately arrive in GEO [51]. In 2001, the Genesis

mission was the first project to actualize the trajectory design concept of using in-

variant manifolds as pathways for transfers. The Genesis spacecraft’s mission was

to collect solar wind samples from a region beyond the Earth’s magnetosphere and

return them to Earth [41]. The spacecraft was directly inserted onto a stable mani-

fold trajectory associated with an unstable periodic orbit around the Sun-Earth 𝐿1
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libration point. The spacecraft traveled to the unstable periodic orbit, performed

its sample collection, and started its return trip on an unstable manifold trajectory

leading from the unstable periodic orbit. The spacecraft took advantage of a “hete-

roclinic” connection between the unstable manifold associated with 𝐿1 periodic orbit

and performed a deterministically “free” (zero-Δ𝑉 ) maneuver to a stable manifold

trajectory associated with an unstable periodic orbit around the Sun-Earth 𝐿2 li-

bration point [8] The spacecraft completed a loop around 𝐿2 on the stable manifold

trajectory before returning to Earth on an unstable manifold trajectory associated

with the unstable periodic orbit around 𝐿2 [41]. Methods making use of DST as first

utilized in the Genesis mission are further examined in this investigation to design

spacecraft missions for practical military applications.

As stated, using a multi-body dynamical model expands the design options for

a mission design problem, and all applicable solutions should be considered when

planning trajectories. Modern technology and supercomputers have transformed pre-

viously unthinkable problems to solve by hand into possible feats that, in most cases,

can be solved accurately in a relatively miniscule amount of time. Though advanced

technology gives immense computing power, trying to search all available solutions

in a multi-body space dynamics problem still poses problems. Searching all possible

solutions for a general spacecraft problem that wants the “best” solution will leave a

computer with an infinite search. Using visual tools available in multi-body problems

can let the mission planner gain insight into the problem. This leads the astrody-

namicist to narrow the all-solution search by clarifying potential initial conditions,

midpoints, end boundaries, and specific trajectory behaviors that may be possible in

a given problem. Using tools developed from DST commonly incorporates looking

at the given system in less intuitive coordinates of the phase space, usually imple-

mented with simple visual presentations. One possibility when using visual tools is
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to use the available information to make a guess for an initial design, and then use

technological resources to refine and potentially optimize that guess and the nearby

solutions. A focus in this research is to use visual mapping tools to gain insight into

the behavior of the solution space of trajectories, inputting an initial guess into a

Newton-Raphson algorithm and utilizing computational power to refine the solution.

The first step in integrating DST techniques in this research is to compute invariant

manifolds associated with unstable periodic orbits.

2.14 Invariant Manifolds

DST serves to introduce the increasingly more popular space mission design con-

cept of using invariant manifolds associated with unstable periodic orbits as means

for orbital transfers. Wiesel defines these structures as “surface[s] of lower dimen-

sion imbedded within the phase space” [20]. In the CR3BP, manifolds are notionally

linked to the stability of the equilibrium points and periodic orbits of which they are

associated. Consider the 𝑛-dimensional linearized system represented by equation

(62). As mentioned earlier, the eigenvalues, 𝜆𝑖, of the constant 𝐴 matrix for the lin-

earized system evaluated at an equilibrium point, 𝑋⃗𝑒𝑞, play a role in characterizing

the specified solution’s stability. In general, the system’s 𝑛-dimensional space obeys

𝑟𝑎𝑛𝑘(𝐴) = 𝑛 = 𝑛𝑠 + 𝑛𝑢 + 𝑛𝑐, where 𝑛𝑠 is the number of eigenvalues with negative

real parts (Lyapunov stable), 𝑛𝑢 is the number of eigenvalues with positive real parts

(Lyapunov unstable), and 𝑛𝑐 is the number of eigenvalues with purely imaginary

parts (marginally stable) [25,34,52,53]. The space R𝑛 is usually represented in terms

of three subspaces associated with the eigenvalues: the stable subspace (𝐸𝑠), the

unstable subspace (𝐸𝑢), and the center subspace (𝐸𝑐) [25, 34, 52, 53]. These eigen-

values also have associated, linearly independent eigenvectors, 𝑣⃗𝑖, that span R𝑛 and

each define a direction tangent to the associated subspace. A solution in a specified
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subspace also remains in that subspace for all time, indicating the existence of local

stable and unstable invariant manifolds, 𝑊 𝑠
𝑙𝑜𝑐 and 𝑊 𝑢

𝑙𝑜𝑐, associated with 𝐸𝑠 and 𝐸𝑢

in the linear system [25,34,52,53]. The local stable manifolds represent the set of the

initial conditions in the neighborhood of the equilibrium points such that the “flow”

initiated at these points asymptotically approaches the point as 𝑡 → 8. Similarly,

the local unstable manifold is the comparable set such that the “flow” asymptotically

approaches the equilibrium point as 𝑡 → − 8. Figure 14 represents an example planar

projection of the dynamical “flow” near an equilibrium point.

Figure 14. Notional Representation of the Dynamical “Flow” Near a 2-D Saddle Equi-
librium Point.

The figure shows how the “flow” of the local half manifold branches are represented

by their associated eigenvectors: 𝑊 𝑠+
𝑙𝑜𝑐 is defined by +𝑣⃗𝑠, and likewise for 𝑊 𝑠−

𝑙𝑜𝑐 , 𝑊
𝑢+
𝑙𝑜𝑐 ,

and 𝑊 𝑢−
𝑙𝑜𝑐 defined by −𝑣⃗𝑠, +𝑣⃗𝑢, and −𝑣⃗𝑢, respectively. The associated eigenspaces

ultimately rely on the linearized variational equations for each case, therefore note

that these values and directions are only approximations of the nonlinear dynamics.

The nonlinear, global manifolds may be approximated by taking a small step and

propagating along the appropriate eigenvector directions, in negative time for 𝑊 𝑠
𝑙𝑜𝑐

and in positive time for 𝑊 𝑢
𝑙𝑜𝑐. For both the stable and unstable subspaces, the positive

and negative half manifolds make up the global manifold approximations, 𝑊 𝑠 and

𝑊 𝑢, respectively. Figure 14 also represents a hyperbolic fixed point with no center
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subspace, or 𝑛𝑐 = 0 when evaluated at that point [34]. A center subspace associated

with an equilibrium point encompasses all the periodic and quasi-periodic motion

seen in the vicinity.

Invariant manifolds are also found with respect to periodic orbits. Recall that

a periodic orbit is classified as unstable if an eigenvalue of the orbit’s STM for one

period (monodromy matrix) lies outside of the unit circle. In this case, the charac-

terization of eigenvalues evaluated at a fixed point on the periodic orbit determine

the subspaces that exist in the dynamical “flow” in the vicinity. The eigenvalues 𝜆𝑖

(with corresponding eigenvectors, 𝑣⃗𝑖) that lie inside and outside of the unit circle

are associated with the stable and unstable subspaces. To approximate the global

manifolds associated with a periodic orbit, first the local manifolds for a chosen point

along the orbit are computed by propagating initial conditions perturbed in the di-

rection of the associated eigenvectors. A representation for all the global manifolds

may be computed in the same fashion for all (or a selection of) fixed points along the

periodic orbit, calculating eigenvalues and eigenvectors for each point individually to

numerically integrate manifold trajectories in the appropriate direction. For a less

computationally intensive process, it may be shown that the eigenvalues of the mon-

odromy matrix are independent of the starting point along the orbit, which allows

the STM to be utilized in approximating the manifolds. The relationship between

the STM at one time on the periodic orbit, 𝑡0, may be related to a later time, 𝑡1,

where 𝑇 is one period of the orbit:

Φ(𝑡1 + 𝑇, 𝑡1) = Φ(𝑡1 + 𝑇, 𝑡0 + 𝑇 )Φ(𝑡0 + 𝑇, 𝑡1). (111)

Since 𝑇 represents the same amount of time whether it is added to 𝑡0 or 𝑡1, and
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Φ(𝑡1 + 𝑇, 𝑡0 + 𝑇 ) = Φ(𝑡1, 𝑡0), equation (111) becomes

Φ(𝑡1 + 𝑇, 𝑡1) = Φ(𝑡1, 𝑡0)Φ(𝑡0 + 𝑇, 𝑡0)Φ
−1(𝑡1, 𝑡0), (112)

since Φ(𝑡0 + 𝑇, 𝑡1) = Φ(𝑡0 + 𝑇, 𝑡0)Φ
−1(𝑡1, 𝑡0). Noticing from equation (112) that

Φ(𝑡1 + 𝑇, 𝑡1) and Φ(𝑡0 + 𝑇, 𝑡0) are similar matrices, they must also have the same

eigenvalues. This conclusion implies that if invariant manifolds exist for one fixed

point on a periodic orbit, then they exist for all points along the orbit, since the

eigenvalues determining their existence are associated with each point making up the

orbit. To compute a representation of the global manifolds, a number of fixed points

evenly spaced in time may be chosen along the orbit, and the invariant manifolds

associated with each point may be propagated, together representing the invariant

manifold tubes associated with a periodic orbit. The local manifolds may be computed

for the first fixed point on the orbit, and since the eigenvalues are the same at each

point around the orbit, the linearized “flow” transitions exactly, and the STM between

the last point and the next may be used to determine the eigenvectors at the 𝑖𝑡ℎ point,

i.e.,

𝑣⃗𝑖(𝑡1) = Φ(𝑡1,𝑡0)𝑣⃗𝑖(𝑡0). (113)

In other words, the eigenvectors may be transitioned along the periodic orbit by the

STM as it is numerically integrated simultaneously with the orbit [25,54,55,56].

Similar to the manifolds accompanying equilibrium points, the local stable mani-

folds,𝑊 𝑠
𝑙𝑜𝑐, asymptotically approach the orbit in forward time, while the local unstable

manifolds, 𝑊 𝑢
𝑙𝑜𝑐, asymptotically approach the orbit in negative time. Each manifold

trajectory originating at each fixed point is tangent to the subspace directions defined

by the eigenvectors, 𝑣⃗𝑖, at each point. To numerically approximate the manifold tra-

jectories from an unstable periodic orbit, a fixed point is first defined on a given
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unstable periodic orbit. The initial state for propagation is determined by taking a

small step off the periodic orbit, in the direction of the associated eigenvector. For

example, to determine the initial state for the positive stable half manifold, 𝑋⃗
𝑠+
, a

step 𝑝 is taken in the direction of 𝑣⃗𝑠 from the fixed point, 𝑋⃗𝐹𝑃 ,

𝑋⃗
𝑠+

= 𝑋⃗𝐹𝑃 + 𝑝𝑣⃗𝑠, (114)

where the eigenvector is defined 𝑣⃗𝑠 = [𝑥𝑠 𝑦𝑠 𝑧𝑠 𝑥̇𝑠 𝑦̇𝑠 𝑧̇𝑠]
𝑇 . The velocity of the

associated eigenvector is normalized by the distance components, therefore a “step”

in the vector direction can be described in terms of a disturbance in distance after

the vector is multiplied by a scalar step in distance. The step is a displacement in

both position and velocity, but is normalized by distance. The initial state for the

approximation is then defined,

𝑋⃗
𝑠+

= 𝑋⃗𝐹𝑃 + 𝑙𝑣⃗𝑤𝑠, (115)

where 𝑙 is the step in distance and

𝑣⃗𝑤𝑠 =
𝑣⃗𝑠√︀

𝑥2
𝑠 + 𝑦2𝑠 + 𝑧2𝑠

. (116)

For the Earth-Moon system, a step off the periodic orbit by 𝑙 = 20− 50 km pro-

vides results that still give a decent approximation for the manifold in a reasonable

amount of computation time, while departing the periodic orbit quickly enough to

yield trustworthy numerical integration data [25, 32]. To obtain the remaining local

half manifolds, initial states for 𝑊 𝑠−
𝑙𝑜𝑐 , 𝑊

𝑢+
𝑙𝑜𝑐 , and 𝑊 𝑢−

𝑙𝑜𝑐 are found similarly, stepping

in the respective directions of the associated eigenvectors, −𝑣⃗𝑠, +𝑣⃗𝑢, and −𝑣⃗𝑢. From

these initial states around a fixed point on an unstable periodic orbit, the positive and
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negative stable manifolds are propagated from these initial states in negative time to

approximate trajectories that lead to the periodic orbit in forward time. Conversely,

the positive and negative unstable manifolds are propagated in forward time to ap-

proximate the trajectories that depart the orbit. As in the case with manifolds near

the equilibrium point, the combining of 𝑊 𝑠+
𝑙𝑜𝑐 and 𝑊 𝑠−

𝑙𝑜𝑐 forms the approximation for

the global stable manifold asymptotically approaching the unstable periodic orbit in

forward time in the nonlinear system, and likewise, 𝑊 𝑢+
𝑙𝑜𝑐 and 𝑊 𝑢−

𝑙𝑜𝑐 form the unstable

manifold approaching the orbit in negative time. Manifold trajectories “originating”

from a periodic orbit also share the same 𝐽𝐶 value as their reference orbit. In the

nonlinear system, the collection of manifold trajectories (each 1-D) leading to and

away from the periodic orbit as 𝑡 → 8 form manifold “tube” structures that are 2-D

surfaces in the 6-D phase space. Approximated projections of the stable (orange)

and unstable (purple) manifold tubes associated with an unstable periodic Lyapunov

orbit around the Earth-Moon 𝐿1 libration point are seen in Figure 15. A zoomed view

of the stable and unstable manifold trajectory approximations as they asymptotically

approach and depart the periodic Lyapunov orbit, respectively, is seen in Figure 16.

The manifold trajectories seen in the figure were approximated by choosing twenty

fixed points along the Lyapunov orbit, spaced evenly in time.

Note that the symmetric properties of the CR3BP may also be utilized here by

reflecting solutions across the 𝑥-axis to decrease calculations and integration time. A

stable manifold trajectory propagated in negative time from a point along the periodic

orbit above the 𝑥-axis is also a solution when reflected over the axis, departing the

periodic orbit in forward time, and ultimately originating from the orbit from the

reflected point below the axis.

If a trajectory is “on” a manifold (at the correct position and velocity) at a

given time, it remains on the manifold for all time [25, 32, 52]. This implies that a
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spacecraft trajectory may not cross an invariant manifold in the full phase space. The

time-invariance of the manifolds gives mission designers motivation to explore these

structures for space operations. As suggested by Figure 15, the manifold trajectories

may travel exceedingly far from their reference orbit, and considerably close to bodies

that are distant compared to the periodic orbit. If a spacecraft were to intersect a

manifold trajectory in position, the difference in energy level between it and the

manifold trajectory would dictate the velocity change needed in order to be “on”

the manifold in the full phase space, which may have reasonably small magnitude.

A spacecraft that performs a maneuver to be on a stable manifold trajectory would

then follow the manifold to approach the original unstable periodic orbit (in forward

time). Since a manifold trajectory approaches the orbit in infinite time, a small

maneuver may be performed once the trajectory is sufficiently close to the periodic

orbit. Another small maneuver in the correct direction (depending on the departure

point) may then place the spacecraft on the unstable manifold, eventually leading

away from the periodic orbit.

An intersection (in the full phase space) can also exist between a stable manifold

of an orbit, proceeding in negative time, and an unstable manifold of the same orbit

in forward time, termed a “homoclinic” connection. When the stable and unstable

manifolds originate from different orbits, the connection is called “heteroclinic.” Note

that since the manifold trajectories share a 𝐽𝐶 value with their associated periodic

orbit, a heteroclinic connection may only exist between manifolds originating from

periodic orbits with equivalent energy levels. These connections would theoretically

allow for a “free” (zero-Δ𝑉 ) transfer between the periodic orbits. A series of these

connections may also theoretically lead a spacecraft from one part of the solar system

to another. Within the second volume of Poincaré’s Les Méthodes Nouvelles de la

Mécanique Céleste, he applied the theory of asymptotic solutions to the restricted
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three-body problem, where he explained the concept of homoclinic solutions as “dou-

bly asymptotic solutions” [57]. The sensitivity of these solutions to their initial condi-

tions led Poincaré to explore the notion of chaos. Guckenheimer and Holmes observe

that when the reference vector field and perturbed systems are defined as “close,”

the solutions may be suspected to be close, but it turns out that this is not the case,

and small perturbations may lead to radical changes to the structure [34]. However,

this chaotic behavior is typically seen near limiting, asymptotic behavior, and the

unperturbed and perturbed solutions may be close for finite time periods [34]. For

this reason, perturbations and steps near equilibrium points and periodic orbits are

kept sufficiently small for their specific situations. Nevertheless, other methods for

characterizing the stability and structure of the solution space are useful for mission

design. Poincaré maps may offer this capability, as described in Section 2.16.

2.15 Resonant Orbits

Studying the use of resonant orbits and lunar fly-bys in spacecraft mission design

has steadily increased since the 1960s with Minovitch and JPL’s work with “gravity

assist” fly-by techniques in spacecraft trajectory design [57, 58, 59]. Early studies

of comets near Jupiter showed that their trajectories before a close approach to the

planet were much different than their resulting trajectories after the fly-by. Minovitch

was able to mathematically explain and predict the path of a spacecraft as well as its

increased velocity after traveling close to a Sun-orbiting planet [58, 59]. His gravity

assist technique was first used in 1973 when Mariner 10 journeyed to Venus and

Mercury [59]. In a two-body sense, the orbital energy is decreased and increased

with a series of fly-bys, but in reality, there is a transfer of momentum between

the spacecraft and the fly-by planet [57, 58]. This exchange of momentum is what

allows a resonant orbit that is influenced by the Moon’s gravitational field to offer
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a pathway of reduced Δ𝑉 for a transfer from one place in the primary system to

another. In 2000, Strange and Longuski introduced this concept with their graphical

method of employing gravity assists in trajectory design [60]. Bringing in three-

body dynamics, they incorporate an analytical technique that is directly related to

Tisserand’s criterion, which is an approximation of the Jacobi Constant of the CR3BP

expressed by orbital elements [57, 60]. The AsiaSat-3/HGS-1 design method based

its analytical guess to input into a targeting algorithm on the Tisserand criterion [6].

Some modern applications in mission design involve the concept of traveling to

or from resonant orbits as a starting point or destination orbit, typically planning to

utilize the shape of the resonant orbit to visit a different area of the system or take

advantage of the orbit’s periodicity as it relates to the smaller primary’s orbit about

the larger primary. Parker and Lo explored Earth-Moon mission designs using planar,

symmetric families of periodic orbits. They also studied the invariant manifolds from

unstable orbits in these families, focusing on using resonant orbits that fly by the

Moon [61]. Anderson examined resonant orbits for use in low-thrust mission design

utilizing resonant fly-bys as well as trajectories designed to travel along invariant

manifolds originating from or asymptotically approaching unstable periodic resonant

orbits [57]. The use of resonant orbits is also seen in Garber’s mission orbit selection

process used to set up his “fundamental equation” analysis [62]. Garber focuses

on choosing orbits with natural shape and motion that would closely match the

constraints of the problem [62]. Lantoine, Russell, and Campagnola used a patched

three-body model to enable “resonant-hopping” gravity assists to design and optimize

inter-moon transfers of the Jovian system [63]. The transfer technique of transferring a

spacecraft from one resonant orbit about one moon to a second orbit with a different

resonance has inspired exploration of the relationship between invariant manifolds

of select unstable resonant orbits and their utility in orbital transfers using more
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modern tools and numerical schemes. More recently, Vaquero investigated unstable

resonant orbits and their relationship with the associated invariant manifolds and

potential transfers between resonances [40]. She also cataloged a wide selection of

resonant orbit families in the Earth-Moon CR3BP and explored the use of these

families in different applications based on their specific patterns and routes through

the system [53]. Vaquero and Howell studied employing resonant orbits as transfer

mechanisms between non-resonant orbits, examining design scenarios that transfer

spacecraft from LEO to LPOs [64]. In 2014, Anderson and Lo showed that the stable

manifolds of planar Lyapunov orbits can give insight into the resonances that are

required for the final approach to a body [65]. The use of fly-by gravity assists,

resonant orbits, and invariant manifolds is continuing to become a more extensive

area of research as the lower-energy transfer options in trajectory design consistently

introduce promising options for future missions.

The basic definition of resonance describes the condition in which there is a “simple

numerical relationship between frequencies or periods” [66]. Orbits are classified to

have orbit-orbit resonance (or “coupling”) when a body 𝐴 completes 𝑞 orbits about

a primary body in the same time it takes a body 𝐵 to complete 𝑝 orbits about

the primary [53, 66]. Resonant orbits are commonly described in terms of their 𝑝:𝑞

ratio. In the Earth-Moon two-body model, a resonant orbit occurs when there is a

simple integer ratio between its period and the period of the Moon about the Earth

(𝑝:𝑞, where 𝑝 = number of spacecraft revolutions of the Earth and 𝑞 = number of

lunar revolutions of the Earth) [66, 67]. “Exterior” and “interior” resonant orbits

exist, where the spacecraft travels along the outer boundaries of the primary system

or within 𝑃2’s orbit, respectively [53, 66]. A ratio where 𝑝 < 𝑞 corresponds to an

exterior resonant orbit, while interior orbits have ratios where 𝑝 > 𝑞. In the CR3BP,

the gravity of additional bodies causes the time it takes for a body to complete one
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revolution to deviate slightly, even for a closed, periodic trajectory. Consequently,

the 𝑝:𝑞 ratio of resonant orbits is not exactly equal to the ratio of resonant bodies’

orbital periods. The ratio in multi-body problems is instead an approximate rational

fraction, where the spacecraft completes 𝑝 revolutions in the approximate time it

takes the Moon to travel 𝑞 orbits [53, 66].

Examining resonant orbits in the rotating frame shows that every time a space-

craft passes through an apse location, a “loop” appears in the resonant trajectory.

This occurrence is only observed in the rotating frame, where the number of loops

correspond to the value of 𝑝. As an example, a 4:1 resonant orbit is seen in Figure

17. A spacecraft traveling along this orbit completes four revolutions of the Earth in

the same time that the Moon completes one revolution.
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In order to find a resonant orbit in the CR3BP, a multiple-shooting targeting

scheme (described in Section 3.1) is applied, and the converged solution is a closed,

periodic trajectory with an approximate rational fraction 𝑝:𝑞 ratio. Initial guesses

for the patch points, or select initial guesses along the orbit, are the apses of a
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resonant trajectory, chosen so that the trajectory begins and ends at an apse location

on the 𝑥-axis. This implies that there is no component of the velocity in the 𝑥-

direction. For a planar resonant orbit, 𝑧0 = 𝑧0 = 0, so the initial state vector is then

𝑋⃗0 = [𝑥0 0 0 0 𝑦0 0]𝑇 when starting and ending on the 𝑥-axis. The error vector for

targeting resonant orbits is driven to zero to within 10−12 nondimensional units, and

since the error vector is made up of the distances and velocities between each patch

point state, this tolerance corresponds to a total error of sub-cm and even smaller

sub-mm/s accuracy for each state defined along the periodic orbit. See Section 3.1

for further description. A continuation method (Section 3.2) can be applied to find

other orbits with similar characteristics and the same resonant ratio, or a selection of

a 𝑝:𝑞 resonant orbit family.

A catalog of various resonant orbit families exhibiting orbit-orbit resonance be-

tween a spacecraft and the Moon about the Earth are seen in Vaquero’s work [53].

Different families of resonant orbits illustrate various directions of motion near the

primaries and unique paths throughout the system. In this investigation, a resonant

orbit family in the Earth-Moon system is selected for a particular mission based on its

natural shape and itinerary around the Earth. A specific resonant orbit in the family

can be chosen based on its distinctive characteristics, like distance from a primary or

known maneuver point in the system. A piece of this resonant orbit, or a resonant

“arc,” is used to generate an initial guess to input into a multiple-shooting targeting

algorithm searching for a desired mission trajectory.

2.16 Poincaré Maps

Wiesel explains that numerical integration is not only used as a mathematical

tool for computing and examining a single orbit; it also serves as a method to see

into the behaviors and inner-workings of nonlinear systems [20]. One way that a
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numerical simulation can explain previously unseen characteristics of a system is

through Poincaré maps. Wiggins outlines three different advantages that come from

reducing the study of a continuous time system (or a “flow”) to the study of a discrete

time system (through a Poincaré map) while examining ordinary differential equations

[52]:

∙ (1) “Dimension reduction”: a Poincaré map offers the advantages of always reduc-

ing the dimension of the problem by eliminating at least one variable.

∙ (2) “Global dynamics”: the map view provides an “insightful and striking” visual of

the global dynamics of systems with four or less dimensions (4-D phase space).

∙ (3) “Conceptual clarity”: the map displays a “succinct statement” of the potentially

complicated characteristics of different facets of the system on the map [52].

In 1881, Henri Poincaré envisioned a visualization tool to analyze stability behav-

iors in dynamical systems called a Poincaré map. When looking at the data on a

Poincaré map, also called first-return map, trajectories or groups of trajectories may

exhibit structures or features that signify certain behaviors. These characteristics may

otherwise be unknown or difficult to see from looking at a selection of trajectories in

other configurations or typical spaces.

The Poincaré map is one particular dynamical tool used in this investigation that

allows the mission planner to gain visual insight into the scenario by “slicing” the

design space and reducing the dimensionality of the problem. The Jacobi Constant

has utility when designing Poincaré maps, as defining an energy level of an orbit or

set of trajectories reduces the dimension of the entire data set by one. Portraying this

system information with a Poincaré map reduces the problem by another dimension

when defining a surface of section. Considering an 𝑛-dimensional, continuous time

system, the surface of section is a defined (𝑛− 1)-dimensional hypersurface that de-
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scribes a cross-section of the dynamical “flow” of the system [34,68]. In this analysis,

2-D Poincaré maps, defined with a certain energy level (by specifying a value of Ja-

cobi Constant that holds true for all trajectories represented on the map), are used to

analyze a particular cross-section of the planar CR3BP. A 4-D space defined by the

state is reduced to a 2-D space on the map. Generating Poincaré maps for the spatial

CR3BP (6-D phase space) would require a 4-D map, which is difficult to visualize.

Various methods for producing maps for the spatial problem can be seen in the work

of Froeschlé [69], Gómez et al. [70], Koon et al. [71], Craig Davis and Howell [72],

Geisel [32], and Haapala [73]. In 1964, Hénon generated 2-D Cartesian phase space

maps for various Jacobi Constant values in the planar Copenhagen problem, in which

the primaries are defined with equal mass [74]. There are many examples of Poincaré

maps that define the surface of section as a physical plane. In his work searching for

low-energy transfers in the Earth-Moon system, Conley developed a proof that de-

scribed how invariant manifolds associated with planar, periodic orbits in the vicinity

of the collinear libration points can be classified based on their behavior within their

accessible region [50]. Expounding upon Conley’s work, the use of invariant manifolds

as a transfer method was explored using Poincaré sections by Koon et al. and Gómez

et al. [70, 71].

Another method of defining the surface of section for a Poincaré map is with the

plane of periapsis. In a two-body sense, a periapse is commonly referred to as the

point on a closed orbit that is closest to the central primary, while an apoapse refers

the farthest point. In the CR3BP, an apse occurs at a point along an orbit when the

radial velocity with respect to the primary is zero. Periapsis satisfies the condition

for an apse, and the radial acceleration is positive. Conversely, apoapsis occurs when

the radial velocity is zero and acceleration is less than zero (see Section 3.3). Creating

this type of map allows a physically intuitive display of the periapsis information in
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the configuration space. Periapsis maps have been generated to show the periapses of

the stable and unstable manifolds of unstable periodic orbits around libration points

that may serve as transfer pathways into and out of the system or as an opportunity

for a heteroclinic or homoclinic connections at a certain energy level.

Mission design methods have been developed from visual insight gained from the

map based on the trajectories’ short- and long-term behavior within the region close

to a primary, typically 𝑃2. Villac and Scheeres first exploited the periapsis Poincaré

map to identify regions of escape from the vicinity of 𝑃2 in the planar Hill three-

body problem, which is a limiting case of the CR3BP [75, 76]. Later, Paskowitz and

Scheeres employed periapsis Poincaré maps to explore low-energy transfers between

orbits with different long-term classifications in the 𝑃2 region [77]. More recently,

Haapala used manifold periapse structures to design planar trajectories with prede-

termined characteristics like long-term capture and transit behavior near and through

the 𝑃2 region [30]. Haapala and Howell also used periapsis Poincaré maps to con-

struct transfers between libration point orbits in various three-body systems and

explored strategies for representing systems in the spatial CR3BP, including observ-

ing the natural motion of captured Jupiter-family comets and searching for periodic

orbits in the system [73, 78]. Craig Davis developed a design process of orbits in

the 𝑃2 region in the Saturn-Titan and Earth-Moon CR3BP systems, and the Sun-

Saturn-Titan restricted four-body system [79]. She studied the effects of the tidal

acceleration due to 𝑃1 on individual and groups of orbits, investigated the short-

and long-term behaviors of various orbit types based on initial conditions in different

systems with multiple energy levels, and predicted trajectories of fly-bys combined

with a tidally-influenced environment [79]. Howell and Craig Davis classified various

types of escaping and captured orbits in the 𝑃2 region based on initial conditions,

designing missions by selecting orbits with desired behaviors with specific focus in
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the Saturnian system [72,80]. Howell et al. also investigated the evolution of trajec-

tories in the vicinity of the smaller primary and computed orbits with desired sets of

characteristics in the region [81].

A Poincaré map may be generated for any nonlinear system of equations. The

following development of Poincaré maps is based on discussion and definitions used

in the work of Parker and Chua [68] as well as Guckenheimer and Holmes [34], along

with adaptations by Haapala [73]. Again consider an 𝑛-dimensional phase space with

an autonomous, continuous-time system in the form of equation (62), where 𝑓(𝑋⃗)

is a vector field. Within the system, an (𝑛− 1)-dimensional hypersurface, or surface

of section, can be defined,
∑︀

. The surface of section is transverse to the dynami-

cal “flow,” 𝜑⃗(𝑋⃗ 𝑡), generated by 𝑓(𝑋⃗) [25, 34, 68]. In general, the hypersurface is

not restricted to a plane, but must be selected so that the flow is transverse to it

everywhere. This means that some component of the flow must be perpendicular

to the hyperplane surface. A trajectory associated with the flow may intersect the

hyperplane at a point, 𝑥. Let
∑︀+ be defined as the hypersurface of which the com-

ponent of the flow normal to the hyperplane changes from the negative side of the

surface to the positive side. Conversely, let
∑︀− be defined as the hypersurface of

intersections from the opposite direction, and
∑︀

will be more specifically defined as

the hypersurface with intersections occurring from either direction. A Poincaré map,

𝑃 , maps one surface of section,
∑︀

1, to another,
∑︀

2. The two hyperplanes are usually

specified such that they are the same [34,68,73]. The Poincaré map would then illus-

trate intersections of one hypersurface,
∑︀

1 =
∑︀

2. The first return of the trajectory

defines the nonlinear map 𝑃 :
∑︀

1 →
∑︀

2, and 𝑃 (𝑋⃗0) = 𝑋⃗(𝑋⃗0), where 𝑋⃗0 is the

initial state of the trajectory. In Figure 18, the sequence {𝑥1, 𝑥3, 𝑥5, · · · } lies on the

one-sided map, 𝑃+, and the sequence {𝑥2, 𝑥4, · · · } lies on the one-sided map, 𝑃−.

The point 𝑥3 corresponds to the first crossing of
∑︀−, and likewise, 𝑥4 corresponds to
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the first crossing of
∑︀+. The complete set of points {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} belongs on the

two-sided map, 𝑃 , corresponding to a set of intersections of the surface of section,∑︀
.

Figure 18. Notional Representation of a Poincaré Surface of Section.

Considering an example periodic orbit with initial state conditions, 𝑋⃗0, and map

intersection, 𝑋⃗
*
, the figure shows that the orbit returns to the same point on the

map at which it started. 𝑃 :
∑︀

→
∑︀

maps 𝑋⃗
*
to itself repetitively, so 𝑃 (𝑋⃗) = 𝑋⃗

*
.

Such a state is known as a fixed point on the map. In his Méthodes Nouvelles, Henri

Poincaré regards the subject of periodic orbits as one of the only ways to see deeper

into the dynamical complexity of the problem of three bodies, and by extension,

specifically the CR3BP [1].

A non-periodic trajectory is seen as a set of points on the map. In the CR3BP,

the Jacobi Constant reduces the dimension of the problem by one when held fixed.

Choosing a surface of section and plotting the intersections of a set of trajectories on

a Poincaré map further reduces the data by one dimension. In the planar CR3BP,

4-D trajectories can be represented in 2-D with a fixed Jacobi Constant on a Poincaré
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map. The trajectory’s entire state space is represented on the plane in the projection.

The possible visual clues that explain different areas of the space can be described

more easily by observing a Poincaré map. The map in Figure 19 shows a Poincaré

map for a surface of section defined at the 𝑦 = 0 plane of the planar CR3BP for the

Earth-Moon system with 𝐽𝐶 = 3.1. In other words, the original 4-D space of the set

of trajectories is reduced to a 2-D map. Initial conditions for each planar trajectory

represented on the map are taken in steps in 𝑥 along the 𝑥̇ = 0 axis, so the initial

state for each of the 60 trajectories presented is in the form 𝑋⃗ = [𝑥0 𝑦0 𝑥̇0 𝑦̇0]
𝑇 , where

𝑦0 = 𝑥̇0 = 0. With the given 𝐽𝐶, a ±𝑦̇0 value may be determined as 𝑥 values are

defined. For a two-sided map, all surface of section intersections would be shown for

trajectories with both positive and negative 𝑦̇0 values. However, the map in Figure

19 is a one-sided map, initialized with trajectories with 𝑦̇0 > 0. Each trajectory is

also numerically integrated for 150 revolutions of the primaries (about 11 years) with

the goal of producing a map that is sufficiently filled out with points to determine

the behavior.

Poincaré maps provide a broad view of the types of orbits in the selected region

at the associated energy level. Returns on the map that correspond to quasi-periodic

behavior tend to form structures that resemble concentric closed curves. These curves

emerge with an ordered placement of the subsequent returns, as seen in Figure 19.

Quasi-periodic behavior is also seen in “islands” of similar arrangement surrounding

the larger ordered structures. Zooming in to these ordered regions would reveal

that these islands and curves are actually made up of smaller islands and curves,

and according to Wiesel, “this hierarchical structure continues forever, at even finer

scales” [20]. At the “center” of the quasi-periodic structure (not necessarily the

geometric center), even if it does not appear on the map with this set of trajectories,

a periodic orbit (or a single, fixed point on the map) is expected to exist. Initial
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Figure 19. Poincaré Map for Earth-Moon System, 𝐽𝐶 = 3.1, 60 Trajectories Numerically
Integrated for 150 Revolutions of the Primaries (About 11 Years).
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conditions for the approximate location of this fixed point may be taken from the

map (where 𝑥̇0 = 0, indicating a perpendicular crossing of 𝑦 = 0) and input into

a targeting algorithm to compute a periodic orbit. The ordered region around this

periodic orbit indicates that the periodic orbit would be classified as linearly stable.

A periodic orbit with perpendicular crossings of the 𝑦 = 0 axis using the initial

conditions approximated from the map (labeled “stable periodic orbit” in Figure 19)

was targeted using a single-shooting algorithm. The resulting converged periodic

orbit is seen in the configuration space in Figure 20.

Figure 20. Periodic Orbit Targeted By Single-Shooting With Initial Guess from
Poincaré Map for Earth-Moon System, 𝐽𝐶 = 3.1, Integration Time=1.356 nondimen-
sional units (About 6 days).

One shortcoming of Poincaré maps comes with searching for unstable periodic

orbits. There is not obvious structure surrounding unstable orbits as with the periodic

or quasi-periodic case, but indications of instability are found in between the island

structures indicating stable motion. “The breakdown from order to chaos begins in

the vicinity of unstable periodic orbits,” says Wiesel [20]. Regions on the map in

Figure 19 also shows regions of seemingly random points, which is a sign of chaotic
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behavior in that region. The large areas on the map that do not contain any points are

associated with “forbidden regions” defined by the ZVCs. Smaller “holes” of empty

regions on the map are observed because the particular initial conditions selected do

not result in map returns in those areas during the integration time.

Similar maps of multiple energy levels may be compared to give the mission de-

signer insight into how the different types of orbits are seen to “evolve” as energy

level changes. An example of evolving structure and other behaviors are revealed by

periapsis Poincaré maps in Chapter 4. Defining a map that only presents trajectories

at one energy level may be seen as another disadvantage, but individual maps may

still be helpful. Furthermore, since maps can be created with different initial con-

ditions and for different integration times, looking at a series of maps with different

energy levels may reveal trends of structure in certain areas. For example, periodic

orbits may appear closer and closer together in certain regions as the value of 𝐽𝐶

is increased. As another example, if unstable behavior is observed on the map of

one energy level, but an unstable periodic orbit is sought at a different energy level,

then the evidence on the first map may be enough proof to go looking for unstable

behavior in the corresponding area on the map of a different energy level.

2.17 Chapter 2 Summary

In this chapter, a historical overview is provided to set up the research presented

with a foundational background originally stemming from the world’s earliest and

most influential philosophers and scientists. The theories of general and special per-

turbations are introduced, as well as the use of numerical integration to determine

particular solutions for a problem with no known closed-form analytical solution. A

summary of the 2BP equations of motion and solutions are given, and the simplify-

ing assumptions and equations of motion are justified and derived for the CR3BP.
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Nondimensional units are defined, and the transformation to and from the inertial

and rotating frames is described, giving an initial explanation of the side-by-side plots

of trajectories in these frames that will be shown throughout this research. Also de-

scribed is the Jacobi Constant (𝐽𝐶), the one known integral of the motion admitted

by the CR3BP, and how it leads to “accessible” and “forbidden regions” delineated

by the ZVCs. Observations of special features in the rotating frame are described,

including the five equilibrium points and the symmetry properties of solutions. The

equilibrium points and periodic orbits are studied through a linear stability analysis,

and an explanation of the resulting invariant manifold approximations is given, setting

the groundwork for DST approaches to mission design. The STM is introduced as

a way to compute the manifold trajectories associated with unstable periodic orbits,

and to observe the “flow” of dynamics. Resonant orbits are presented and defined,

and an introduction to Poincaré maps is provided, leading the way to the design

methods that are specific to this research. Targeting schemes and continuation meth-

ods, as well as periapsis Poincaré maps are numerical tools specifically developed to

aid in finding the solutions to design scenarios proposed in the next section.
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3. Design Methodology and Numerical Tools

The algorithms for single- and multiple-shooting that target trajectories from one

specified point to another, which are utilized in Test Case I, are described in this

chapter. These targeting algorithms are also used to compute periodic orbits about

the Earth-Moon 𝐿1 libration point, as well as periodic resonant orbits in the Earth-

Moon system. Single-parameter and pseudo-arclength continuation methods that

search for members of periodic orbits are also detailed. The initial guess for some

resonant orbits are found from picking initial conditions off the Earth-Moon Poincaré

map shown in Section 2.16 that indicated a periodic orbit that returned to the same

point on the map multiple times. Once the first orbit is found, pseudo-arclength

continuation serves to find the next member in the periodic resonant orbit family,

utilizing a sophisticated program that steps in the direction of the closest family

member. These continuation methods were employed to generate a family of the

periodic orbits around Earth-Moon 𝐿1 as well as a family of periodic resonant orbits.

The initial guesses for each of these resonant orbit family members’ patch points

are the apses of the orbit, or the intersections of the periapsis surface of section.

The hyperplane associated with the condition of periapsis is also introduced in this

chapter, along with the method to produce two types of periapsis Poincaré maps,

which are used in the test cases.

Each simulation in this investigation uses MATLAB R○ to find solutions. Depend-

ing on a problem’s complexity, all programs successfully produce results within a total

time ranging from a few seconds to a few hours. The generation of Poincaré maps lasts

from a few minutes to over a full day’s time, depending on the number of trajectories

represented and the numerical integration times for trajectories. In this work, MAT-

LAB R○ version 8.1.0.604 (R2013a) was used, with benchmark task elapsed times:

0.3120, 0.3502, 0.2497, 0.3397, 0.8810, 3.8939. All simulations were performed on a
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Windows 2007 computer using an Intel R○ Celeron R○ Central Processing Unit E3400

@ 2.60 GHz with 4.00 GB of RAM.

3.1 Targeting Strategies

Single- and multiple-shooting algorithms are targeting strategies employed to find

periodic orbits or specific trajectories in the CR3BP. Both are iterative differential

corrections processes that incrementally correct the initial conditions of a trajectory or

trajectory segments to ultimately drive the differences between the end conditions and

the desired end conditions to zero (to within a satisfactory tolerance). These methods

also utilize the STM as a linear approximation of nearby trajectories. Consider a

reference solution, 𝑋⃗
*
, with initial state,

𝑋⃗
*
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥0

𝑦0

𝑧0

𝑥̇0

𝑦̇0

𝑧̇0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (117)

at the initial time 𝑡0. The targeting algorithm constrains the end state 𝑋⃗
𝑡
to become

the desired end state at some time 𝑡𝑓 . Using a generalization of constraints and

design variables, let 𝑄⃗ be the design variable vector comprised of 𝑛 free variables

[𝑄1, 𝑄2, · · ·𝑄𝑛] that may be adjusted or “controlled.” The variation between the

design variable at the desired state and the design variable defined at the reference,

𝛿𝑄⃗, is given by:

𝛿𝑄⃗ = 𝑄⃗𝑑 − 𝑄⃗
*
, (118)
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where 𝑄⃗𝑑 and 𝑄⃗
*
represent the design variables evaluated at 𝑋⃗𝑑 and 𝑋⃗

*
, respectively,

i.e., 𝑄⃗(𝑋⃗𝑑) = 𝑄⃗𝑑 and 𝑄⃗(𝑋⃗
*
) = 𝑄⃗

*
. The constraints vector 𝐹 (𝑄⃗) contains 𝑚

constraint equations that are driven to 0⃗ (to within a satisfactory tolerance) by the

nature of the corrections process. The constraints may be specified simply at the end

condition, or at multiple points along the trajectory. An iterative targeting process

like single- or multiple-shooting initializes on a first guess for each design variable. In

order for the automated algorithm to converge to a solution, the initial guess must

be close enough to the solution. The single-shooting method, or a simple targeting

method, considers a trajectory or orbit in a single segment. The constraints are

designed such that the fixed end state is reached by altering the initial conditions.

For an initial 𝑄⃗ close to a reference variable 𝑄⃗
*
, 𝐹 (𝑄⃗) can be approximated using a

first-order Taylor series expansion [35],

𝐹 (𝑄⃗) = (𝐹 (𝑄⃗
*
) +𝐷𝐹 (𝑄⃗

*
)(𝑄⃗− 𝑄⃗

*
), (119)

where

𝐷𝐹 (𝑄⃗
*
) =

𝜕𝐹

𝜕𝑄⃗
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐹1

𝜕𝑄1

𝜕𝐹1

𝜕𝑄2
· · · 𝜕𝐹1

𝜕𝑄𝑛−1

𝜕𝐹1

𝜕𝑄𝑛

𝜕𝐹2

𝜕𝑄1

𝜕𝐹2

𝜕𝑄2
· · · 𝜕𝐹2

𝜕𝑄𝑛−1

𝜕𝐹2

𝜕𝑄𝑛

...
...

...
...

...

𝜕𝐹𝑚−1

𝜕𝑄1

𝜕𝐹𝑚−1

𝜕𝑄2
· · · 𝜕𝐹𝑚−1

𝜕𝑄𝑛−1

𝜕𝐹𝑚−1

𝜕𝑄𝑛

𝜕𝐹𝑚

𝜕𝑄1

𝜕𝐹𝑚

𝜕𝑄2
· · · 𝜕𝐹𝑚

𝜕𝑄𝑛−1

𝜕𝐹𝑚

𝜕𝑄𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (120)

Notice that the STM can be used to populate the elements of equation (120). Desiring

𝐹 (𝑄⃗) = 0⃗, equation (119) becomes,

𝐹 (𝑄⃗
𝑗
) +𝐷𝐹 (𝑄⃗

𝑗
)(𝑄⃗

𝑗+1
− 𝑄⃗

𝑗
) = 0⃗, (121)
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where 𝑄⃗
𝑗
represents the current value for 𝑄⃗, and 𝑄⃗

𝑗+1
symbolizes the next value.

Equation (121) is solved iteratively until 𝐹 (𝑄⃗
𝑗+1

) = 𝐹 (𝑄⃗
*
) and 𝐹 (𝑄⃗) = 0⃗ is satisfied,

or ‖𝐹 (𝑄⃗
𝑗+1

)‖ ≤ 𝜖 where 𝜖 is the convergence tolerance (in this investigation, 10−12

nondimensional units is the given tolerance).

Notice that the right-most expression multiplied in equation (121) (the difference

between 𝑄⃗
𝑗+1

and 𝑄⃗
𝑗
) determines precisely how to change the state on the next

iteration. In general, if 𝐷𝐹 (𝑄⃗) (size 𝑚 × 𝑛) is a square matrix (𝑛 = 𝑚), then the

update equation is a rearrangement of equation (121) using the inverse of 𝐷𝐹 (𝑄⃗),

𝑄⃗
𝑗+1

= 𝑄⃗
𝑗
− [𝐷𝐹 (𝑄⃗

𝑗
)]−1𝐹 (𝑄⃗

𝑗
), (122)

which computes one unique solution using Newton’s Method. When there are more

design variables than constraints (𝑛 ≥ 𝑚), the 𝐷𝐹 (𝑄⃗) matrix (size 𝑚 × 𝑛) is not

square and therefore not able to be inverted and used in the update equation in

equation (122). In general, there are infinitely many solutions for this case. However,

a unique solution can be identified by selecting a 𝑄⃗
𝑗+1

that is the closest solution to

𝑄⃗
𝑗
, namely the minimum-norm solution, which uses a “pseudo-inverse” of the non-

invertible matrix (minimizing the 2-norm of the difference between the next solution

and the current solution [82]). Note that other methods may be used to compute

a solution, but the minimum-norm solution was examined in this investigation for

problems with non-square 𝐷𝐹 (𝑄⃗) matrices. The update equation for the minimum-

norm solution is seen below:

𝑄⃗
𝑗+1

= 𝑄⃗
𝑗
−𝐷𝐹 (𝑄⃗

𝑗
))𝑇 [(𝐹 (𝑄⃗

𝑗
)(𝐹 (𝑄⃗

𝑗
)𝑇 ]−1𝐹 (𝑄⃗

𝑗
). (123)

This method searches for the closest solution that (if possible) inherits most of the

characteristics of 𝑄⃗
𝑗
. One potential issue associated with this solution method is
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having a small radius of convergence for finding a solution, possibly indicating a more

unstable algorithm [25].

Single-shooting can be used to search for planar periodic orbits in the CR3BP.

The symmetry of the CR3BP is commonly exploited in similar targeting schemes so

that a solution that starts on the 𝑥-axis at 𝑡0 ends at a different point on the 𝑥-axis

at later time, 𝑡𝑓 . The complete periodic orbit is found by reflecting the solution over

the 𝑥-axis. Consider a fixed-time scenario with a specified desired position,

𝑄⃗𝑑 = 𝑋⃗𝑑 =

⎡⎢⎣ 𝑥𝑑

𝑦𝑑

⎤⎥⎦ , (124)

and allow the initial velocity and time to vary. The design variables are then defined:

𝑄⃗ =

⎡⎢⎣ 𝑥̇0

𝑦̇0

⎤⎥⎦ . (125)

The constraints vector, made up of two constraint equations, can then be written,

𝐹 (𝑄⃗) =

⎡⎢⎣ 𝑥𝑑 − 𝑥𝑡
0(𝑣̇0)

𝑦𝑑 − 𝑦𝑡0(𝑣̇0)

⎤⎥⎦ , (126)

where the resultant position components are functions of the initial velocity, 𝑣̇0 =

[𝑥̇0 𝑦̇0]
𝑇 . The 𝐷𝐹 (𝑄⃗) matrix can be constructed using the chain rule to be

𝐷𝐹 (𝑄⃗) =
𝜕𝐹

𝜕𝑄⃗
=

(︃
𝜕𝐹

𝜕𝑟⃗

)︃(︂
𝜕𝑟⃗

𝜕𝑣⃗0

)︂
=

𝜕𝐹

𝜕𝑣⃗0
, (127)

where 𝑟⃗ = [𝑥 𝑦]𝑇 , and 𝜕𝑟⃗
𝜕𝑣⃗0

can be taken from the upper right-hand corner of the planar
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STM (4× 4), computed during that iteration. In matrix form, this becomes

𝐷𝐹 (𝑄⃗) =

⎡⎢⎣ 𝜕𝐹1

𝜕𝑥
𝜕𝐹1

𝜕𝑦

𝜕𝐹2

𝜕𝑥
𝜕𝐹2

𝜕𝑦

⎤⎥⎦
⎡⎢⎣ 𝜕𝑥

𝜕𝑥̇0

𝜕𝑥
𝜕𝑦̇0

𝜕𝑦
𝜕𝑥̇0

𝜕𝑦
𝜕𝑦̇0

⎤⎥⎦ =

⎡⎢⎣ −1 0

0 −1

⎤⎥⎦ 𝜕𝑟⃗

𝜕𝑣⃗0
= −𝐼

𝜕𝑟⃗

𝜕𝑣⃗0
. (128)

Since equations (127) and (128) represent a square matrix, the update equation for

this scenario follows in the form of equation (122),

⎡⎢⎣ 𝑥̇0

𝑦̇0

⎤⎥⎦
𝑗+1

=

⎡⎢⎣ 𝑥̇0

𝑦̇0

⎤⎥⎦
𝑗

−
[︂
−𝐼 𝜕𝑟⃗

𝜕𝑣⃗0

]︂−1

⎡⎢⎣ 𝑥𝑑 − 𝑥𝑡(𝑣⃗0)

𝑦𝑑 − 𝑥𝑡(𝑣⃗0)

⎤⎥⎦ , (129)

where equation (129) is iterated until ‖𝐹 (𝑄⃗)‖ < 10−12.

Time can also be set as a design variable when employing a single-shooting

method. In this case, time will be added as a design variable and the 𝐷𝐹 (𝑄⃗) ma-

trix will incorporate elements of the recently computed STM, as well as the time

derivatives of the current iteration.

When initial guesses for patch points are available, multiple-shooting provides a

method for targeting that may be a more powerful technique for more challenging

design problems. Near chaotic regions of the design space, small modifications to the

initial conditions of a trajectory may lead to substantial changes in the end state.

Breaking the trajectory into smaller sections and applying a differential corrections

process across all sections simultaneously may create an algorithm that has a higher

likelihood to find an overall solution, and/or it may not require as close of an initial

guess as a single-shooting algorithm would require. Multiple-shooting is essentially a

collection of single-shooting processes in one overall targeting scheme, with an initial

setup depicted in Figure 21.
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Figure 21. Notional Multiple-Shooting Targeting Process with Fixed Initial and Final
Positions.

The overall reference solution for a multiple-shooting algorithm is a concatenation

of each reference segment. The initial guess for this method is a set of “patch points”

that identify different points along the reference path. Each segment on the trajectory

begins at a fixed initial position with initial state condition, 𝑋⃗ 𝑖. The initial conditions

of each point are altered such that the difference between their end state, 𝑋⃗
𝑡

𝑖, and

the next state, 𝑋⃗ 𝑖+1, is driven to zero, i.e., 𝑋⃗
𝑡

𝑖+1(𝑋⃗ 𝑖) = 𝑋⃗ 𝑖+1 for all 𝑖. A new set

of discrete points (as close as possible to the old set) form a continuous trajectory in

the entire phase space (seen in Figure 22).

𝑋⃗1  
𝑋⃗2𝑡 = 𝑋⃗2  

  

𝑋⃗𝑖−1𝑡 = 𝑋⃗𝑖−1  
𝑋⃗𝑖𝑡 = 𝑋⃗𝑖  

𝑡1 𝑡2 𝑡𝑖−1 

Figure 22. Notional Multiple-Shooting Targeting Process with Forced Continuity in
Position and Velocity.

The design variable vector, 𝑄⃗, can include any or all of the state vectors for the

patch points, as well as the time for each segment, 𝑡𝑖 to 𝑡𝑖−1, or other quantities that

are functions of the states or their times. As an example, consider a trajectory with

four separate segments (𝑖 = 4). The 𝑄⃗ vector may be assembled of the five initial

points connecting the segments, 𝑄⃗ = [𝑋⃗1 𝑋⃗2 𝑋⃗3 𝑋⃗4 𝑋⃗5]
𝑇 , and to ensure continuity
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from the beginning state to the end state, the constraints vector is constructed,

𝐹 (𝑄⃗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑋⃗
𝑡

2(𝑋⃗1)− 𝑋⃗2

𝑋⃗
𝑡

3(𝑋⃗2)− 𝑋⃗3

𝑋⃗
𝑡

4(𝑋⃗3)− 𝑋⃗4

𝑋⃗
𝑡

5(𝑋⃗4)− 𝑋⃗5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (130)

Note that to target a closed, periodic orbit from beginning to end, the first and last

points can be defined so that they are the same, and the distance between them is

driven to zero by the nature of the algorithm. Consider this example in the spatial

CR3BP. Since the variable vector contains five patch points, and each patch point

defines a state of length six, this gives 𝑄⃗ a length of thirty (𝑛 = 30). The constraints

vector contains four equations constraining states of length six, giving 𝐹 (𝑄⃗) a length

of twenty-four (𝑚 = 24). The 𝐷𝐹 (𝑄⃗) matrix is then expected to have size 𝑚× 𝑛 =

24 × 30. This matrix assembles the partial derivatives of each constraint equation

with respect to each design variable, defined below:

𝐹 (𝑄⃗) =

⎡⎢⎢⎢⎢⎣
𝜕𝐹 1

𝜕𝑄⃗1
· · · 𝜕𝐹 1

𝜕𝑄⃗5

...
. . .

...

𝜕𝐹 4

𝜕𝑄⃗1
· · · 𝜕𝐹 4

𝜕𝑄⃗5

⎤⎥⎥⎥⎥⎦ . (131)

Notice that each numerically integrated end state in an iteration is a function of the

previous state, expressed in the first quantity in each constraint equation (equation
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(130)). The beginning and end states can then be input to equation (131), giving,

𝐷𝐹 (𝑄⃗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑋⃗
𝑡
2(𝑋⃗1)

𝜕𝑋⃗1
−𝐼6𝑥6 06𝑥6 · · · 06𝑥6

06𝑥6
𝜕𝑋⃗

𝑡
3(𝑋⃗2)

𝜕𝑋⃗2
−𝐼6𝑥6

. . .
...

...
. . . 𝜕𝑋⃗

𝑡
4(𝑋⃗3)

𝜕𝑋⃗3
−𝐼6𝑥6 06𝑥6

06𝑥6 · · · 06𝑥6
𝜕𝑋⃗

𝑡
5(𝑋⃗4)

𝜕𝑋⃗4
−𝐼6𝑥6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (132)

which is expanded and simplified to become,

𝐷𝐹 (𝑄⃗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(𝑡1, 𝑡0) −𝐼6𝑥6 06𝑥6 · · · 06𝑥6

06𝑥6 Φ1(𝑡2, 𝑡1) −𝐼6𝑥6
. . .

...

...
. . . Φ1(𝑡3, 𝑡2) −𝐼6𝑥6 06𝑥6

06𝑥6 · · · 06𝑥6 Φ1(𝑡4, 𝑡3) −𝐼6𝑥6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (133)

Since 𝐷𝐹 (𝑄⃗) is not a square matrix, the update equation for the minimum-norm

solution (equation (123)) is solved iteratively until ‖𝐹 (𝑄⃗
𝑗+1

)‖ ≤ 𝜖. The free variable

vector 𝑄⃗
*
then represents the solution for a converged orbit.

3.2 Continuation Methods

As stated previously, periodic orbits in the CR3BP always exist as families of pe-

riodic orbits. For each periodic orbit, two eigenvalues of the monodromy matrix are

equal to one. One of these eigenvalues is associated with the periodicity of the orbit,

and since each eigenvalue comes in a reciprocal pair, there is another eigenvalue equal

to one. This second unity eigenvalue indicates that there are other periodic orbits

nearby that have similar characteristics as the original orbit. Once a periodic orbit

is converged with single- or multiple-shooting, a continuation procedure searches for

next (𝑘𝑡ℎ) solution, 𝑄⃗
𝑘+1

, using the original, converged orbit, 𝑄⃗
*
, as an initial guess.

Single-parameter continuation searches for the next solution by perturbing the first
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solution’s initial condition by stepping in some physical direction. In this investiga-

tion, several members of the planar Lyapunov orbit family is computed around the

𝐿1 libration point. After using single shooting to compute the first periodic orbit,

other family members were generated by perturbing the 𝑥0 component of the initial

state of the first periodic orbit by 𝛿𝑥 along the 𝑥-axis. This slightly perturbed state

is the initial guess for the second orbit in a single-shooting algorithm, where equation

(122) is employed to compute the next periodic Lyapunov orbit family member. The

procedure is repeated to solve for other members in the family, displayed in Figure

23.

Figure 23. Several Members in Planar 𝐿1 Lyapunov Orbit Family in Barycentric Ro-
tating Frame.

Another method of continuing an orbit family is by pseudo-arclength continuation

(PAC). The PACmethod is a more robust type of single-parameter continuation. PAC
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uses the previous family member and searches for the next member with no a priori

knowledge of the evolution of the particular family, while requiring an additional

constraint equation [38, 39, 53]. Traditional single-parameter continuation computes

family members by searching in a spatial direction or by increasing or decreasing

another orbital parameter, such as 𝐽𝐶 or orbital period. Using the PAC method,

the continuation parameter moves in fixed steps, but is not required to be a physical

quantity or to be stepping in a predetermined direction relating to the evolution of

the family. PAC uses the null space of the Jacobian matrix to take a nonphysical step

exactly tangent to the previous family member. In this research, a pseudo-arclength

continuation scheme is implemented with a multiple-shooting algorithm used to search

for families of resonant orbits, using the apses of each orbit as patch points. Planar

members of the periodic 4:3 resonant orbit family are found by PAC. The 3-D axial

members of this family are found by first finding the planar bifurcation orbit using the

method of bisections described in Section 2.12. PAC is then implemented to find the

closest 3-D member from the bifurcation orbit, using a slight velocity perturbation

in the 𝑧-direction (about 10 mm/s was used in this investigation) to seed the initial

3-D orbit’s initial state.

The multiple-shooting variables for this objective are listed below:

𝑄⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋⃗1

𝑋⃗2

...

𝑋⃗𝑁

𝑡1
...

𝑡𝑁−1

𝛽

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(134)
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𝐹 (𝑄⃗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋⃗
𝑡

2 − 𝑋⃗2

...

𝑋⃗
𝑡

𝑁 − 𝑋⃗𝑁

𝑥𝑁 − 𝑥1

𝑦𝑁 − 𝑦1

𝑧𝑁 − 𝑧1

𝑥̇𝑡
𝑁 − 𝑥̇1

𝑧̇𝑡𝑁 − 𝑧̇1

𝑦̇𝑡𝑁 + 𝛽2

𝑟⃗1 · 𝑣⃗1

...

𝑟⃗𝑁−1 · 𝑣⃗𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(135)

This algorithm defines the final patch point to be almost the same as the initial

patch point, enforcing continuity for the trajectory and finding a closed orbit. Notice

the constraint 𝑦̇𝑡𝑁 + 𝛽2 in equation (135). In order to avoid over-constraining the

problem, the difference between all components in the initial and final states is driven

to zero, except for the final velocity component in the 𝑦-direction, 𝑦̇𝑡𝑁 . The constraint

for 𝑦̇𝑡𝑁 defines a slack variable, 𝛽 such that 𝑦̇𝑡𝑁 must be negative (and consistent with

the direction of spacecraft motion for this case). Since the value for 𝐽𝐶 is constant

along any trajectory, the 𝐽𝐶 for this case defines the magnitude of the velocity in

the 𝑦-direction at the end of the trajectory, and 𝛽 forces the direction to be negative,

thereby enforcing continuity along the entire orbit. The initial guess for 𝛽 is −
√︀

‖𝑦̇1‖.

𝐷𝐹 (𝑄⃗) =
𝜕𝐹 (𝑄⃗)

𝜕𝑄⃗
=
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑋⃗
𝑡
2

𝜕𝑋⃗1

−𝜕𝑋⃗2

𝜕𝑋⃗2
06×6 06×6

𝜕𝑋⃗
𝑡
2

𝜕𝑡1
06×6 · · · 06×6 0

06×6 06×6 06×6
. . . 06×6

...
...

...
. . . . . . 06×6 06×6

. . . . . . 06×6
...

06×6 06×6
𝜕𝑋⃗

𝑡
𝑁

𝜕𝑋⃗𝑁−1

−𝜕𝑋⃗𝑁

𝜕𝑋⃗𝑁
06×6 · · · 06×6

𝜕𝑋⃗
𝑡
𝑁

𝜕𝑡𝑁−1

...⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐽6×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

06×6𝑁−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾6×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿6×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 0
...

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

...
... 0 0 0

0 · · · 0
𝜕𝑦̇𝑡𝑁

𝜕𝑡𝑁−1
2𝛽[︂

𝛼𝑁−1×7𝑁

]︂
𝜕𝑋⃗

𝑡
2

𝜕𝑋⃗1

−𝜕𝑋⃗2

𝜕𝑋⃗2
06×6 06×6

𝜕𝑋⃗
𝑡
2

𝜕𝑡1
06×6 · · · 06×6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(136)

where, noticing various diagonal terms that are equivalent to the STMs for each

segment, identity matrices, and time derivatives at the end states, the submatrices in

equation (136) are defined and simplified further:

𝐽6×6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥𝑁−𝑥1

𝜕𝑥1
0 · · · · · · · · · 0

0 𝜕𝑦𝑁−𝑦1
𝜕𝑦1

0 · · · · · · ...

... 0 𝜕𝑧𝑁−𝑧1
𝜕𝑧1

0 · · · ...

... · · · 0 𝜕𝑥̇𝑁−𝑥̇1

𝜕𝑥̇1
0 0

... · · · · · · · · · 0 𝜕𝑧̇𝑁−𝑧̇1
𝜕𝑧̇1

0 · · · · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣ −𝐼4×4

⎤⎥⎥⎥⎥⎦
0

...

...

0

0

...

...

0

0 · · · · · · · · ·

0 · · · · · · · · ·

0− 1

· · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (137)

𝐾6×6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
05×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0 · · · · · · 0

𝜕(𝑦̇𝑡𝑁+𝛽2)

𝜕𝑦̇𝑁−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

05×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0 · · · · · · 0 Φ(𝑡𝑁 , 𝑡𝑁−1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (138)

𝐿6×6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥𝑁−𝑥1

𝜕𝑥𝑁
0 · · · · · · · · · 0

0 𝜕𝑦𝑁−𝑦1
𝜕𝑦𝑁

0 · · · · · · ...

... 0 𝜕𝑧𝑁−𝑧1
𝜕𝑧𝑁

0 · · · ...

... · · · 0 𝜕𝑥̇𝑁−𝑥̇1

𝜕𝑥̇𝑁
0 0

... · · · · · · · · · 0 𝜕𝑧̇𝑁−𝑧̇1
𝜕𝑧̇𝑁

0 · · · · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣ 𝐼4×4

⎤⎥⎥⎥⎥⎦
0

...

...

0

0

...

...

0

0 · · · · · · · · ·

0 · · · · · · · · ·

0 1

· · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (139)

and

𝛼𝑁−1×7𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕(𝑟⃗1·𝑣⃗1)

𝑋⃗1
06×6 · · · · · · 06×6

𝜕(𝑟⃗1·𝑣⃗1)
𝑡1

06×6 06×6 06×1

06×6
. . . . . . · · · · · · 06×6

. . . 06×6
...

...
...

. . . 06×6 · · · 06×6
. . . 06×6

...

06×6 · · · 06×6
𝜕(𝑟⃗𝑁−1·𝑣⃗𝑁−1)

𝑋⃗𝑁
06×6 · · · 06×6

𝜕(𝑟⃗𝑁−1·𝑣⃗𝑁−1)

𝑡𝑁−1
06×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[𝑣⃗1, 𝑟⃗1] 0 · · · 0

0 [𝑣⃗2, 𝑟⃗2]
. . .

...

...
. . . . . . 0

0 · · · 0 [𝑣⃗𝑁−1, 𝑟⃗𝑁−1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (140)

In this configuration of multiple-shooting variables, the free variable vector, 𝑄⃗

(length 7𝑁), and constraints vector, 𝐹 (𝑄⃗) (length 7𝑁 − 1), form a 𝐷𝐹 (𝑄⃗) matrix

that is not square—there is one more design variable than constraint equation. The

multiple-shooting targeter uses the minimum-norm equation (123) to compute a so-

lution, satisfying 𝐹 (𝑄⃗) = 0⃗. The next solution 𝑄⃗
𝑘+1

is then predicted by using the

previously converged solution 𝑄⃗
*
= 𝑄⃗

𝑘
and stepping in some scalar step size Δ𝑠, de-

fined tangent to the family by the null vector. The nullspace of the Jacobian matrix

for the recent solution, 𝐷𝐹 (𝑄⃗), provides the null vector, Δ𝑄⃗
𝑘
. A linear step is taken
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in this direction from the reference solution, shown by the simple equation,

𝑄⃗
𝑘+1

= 𝑄⃗
𝑘
+Δ𝑠 ·Δ𝑄⃗

𝑘
. (141)

To require that the next member in the family is a fixed step size from the previous

solution, a scalar constraint equation is added to the constraints vector 𝐹 (𝑄⃗), to

construct the augmented constraint vector for the new prediction, 𝐺⃗(𝑄⃗), defined,

𝐺⃗(𝑄⃗
𝑘+1

) =

⎡⎢⎣ 𝐹 (𝑄⃗
𝑘+1

)

(𝑄⃗
𝑘+1

− 𝑄⃗
𝑘
)𝑇Δ𝑄⃗

𝑘
−Δ𝑠

⎤⎥⎦ . (142)

The addition of this constraint results in an equal number of variables and constraints,

forming a square, augmented Jacobian matrix,

𝐷𝐺⃗(𝑄⃗
𝑘+1

) =
𝜕𝐺⃗(𝑄⃗

𝑘+1
)

𝜕𝑄⃗
𝑘+1

=

⎡⎢⎣ 𝐷𝐺⃗(𝑄⃗
𝑘+1

)

Δ𝑄⃗
𝑘𝑇

⎤⎥⎦ . (143)

Recall equation (122) for obtaining a unique solution for the next member of the

family by inverting the Jacobian matrix and iteratively updating the result,

𝑄⃗
𝑘+1

𝑗+1 = 𝑄⃗
𝑘+1

𝑗 −
[︁
𝐷𝐺⃗(𝑄⃗

𝑘+1

𝑗 )
]︁−1

𝐺⃗(𝑄⃗
𝑘+1

𝑗 ). (144)

Once a solution is determined (the next family member is found), the entire algorithm

repeats and a given number of family members may be calculated. Figure 27 shows

members of the Earth-Moon 4:3 resonant orbit family, calculated using this method.

PAC is particularly useful when little information is known about a particular family

or when a parameter obeying a simple trend is difficult to find. In general, PAC does

not require prior information to find families and collections of orbits.
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Figure 24. Planar and Axial Members of Periodic 4:3 Resonant Orbit Family.
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3.3 Periapsis Poincaré Maps

In Section 2.16, Poincaré maps with Cartesian phase space surfaces of section were

described, in which the hyperplane (𝑦 = 0) was a plane in the configuration space. In

general, the surface of section does not have to be a plane in the configuration space,

but rather, can be a plane specified by a condition associated with the phase space,

including the velocity space. Such is the case with periapsis Poincaré maps, defined

by the plane of periapsis passage. In the two-body problem, a periapse occurs when a

point on a trajectory reaches a minimum distance to the primary, and conversely, an

apoapse reflects the greatest distance from the gravitational body [75, 76, 77]. In the

CR3BP, an apse is the condition of having zero velocity in the radial direction from

the chosen reference primary. In previous research, the periapses are often defined

with respect to the smaller primary, 𝑃2, due to the interest of different applications

for trajectories in the vicinity of moons [30, 53, 73, 75, 76, 77]. In this investigation,

the focus goes toward the characterization and application of trajectories near the

Earth (or 𝑃1 in the Earth-Moon CR3BP), and for this reason, 𝑟 is defined as the

radial distance between the Earth and the spacecraft (𝑃1 and 𝑃3). Periapsis satisfies

the apse condition of 𝑟̇ = 0, giving a local minimum of the position magnitude of the

spacecraft with respect to the Earth, and occurs specifically when 𝑟 ≥ 0. Apoapsis is

then when 𝑟̇ = 0 and 𝑟 ≤ 0. One useful feature of a periapsis surface of section is that

it may be projected directly into the more intuitively understood configuration space,

rather than a mixed position-velocity phase space, as in Figure 19. For this research,

only the planar CR3BP periapsis maps will be generated, creating 2-D maps. The

following explanation of the periapsis condition in the CR3BP is based on Villac and

Scheeres’s development, along with Haapala’s adaptations [30, 73, 75]. The position

119



vector of 𝑃3 with respect to 𝑃1, 𝑞, and its derivative, ˙⃗𝑞, are then defined

𝑞 = [𝑥+ 𝜇 𝑦]𝑇 , ˙⃗𝑞 = [𝑥̇ 𝑦̇]𝑇 . (145)

The magnitude of the radial acceleration can then be written:

𝑟 =
1

𝑟
( ˙⃗𝑞 ˙⃗𝑞

𝑇
)− 1

𝑟3
(𝑞 ˙⃗𝑞

𝑇
)2. (146)

The periapsis condition in terms of Cartesian coordinates can then defined by

𝑞𝑇 ˙⃗𝑞 = 0 (147)

and with 𝑣 = ‖ ˙⃗𝑞‖,

𝑣2 + 𝑞𝑇 ¨⃗𝑞 = 0, (148)

where equation (147) sets the last term in equation (146) to zero, producing equation

(148) [75]. Thus, the condition of periapsis occurs when 𝑞 is orthogonal to ˙⃗𝑞. Though

the vector 𝑞 and its derivative may be expressed in any coordinate frame, the defini-

tions above are frame independent, therefore a periapse in the rotating frame is also

defined as a periapse in the inertial frame. The periapsis Poincaré maps produced

in this investigation are categorized into two types: (1) maps showing the periapses

of the stable and unstable manifolds of unstable periodic orbits, used for observing

opportunities for transfer; and (2) maps with initial conditions starting with a pe-

riapse near GEO altitude in the planar CR3BP, used to explore end conditions for

a given time interval. Each of these types of periapsis maps represent a 4-D polar

coordinate phase space by a 2-D map, yet, the periapses are ultimately plotted in

Cartesian coordinate configuration space in the rotating frame.
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3.3.1 Periapsis Poincaré Maps Representing Stable and Unstable In-

variant Manifold Trajectories

The first type of the periapsis Poincaré maps described in the preceding section

shows the periapses of the stable and unstable manifolds departing from an unstable

periodic Lyapunov orbit around 𝐿1 in negative and forward time, respectively. The

periapses are colored based on their association with the stable or unstable manifolds.

These maps may give insight into the location of a homoclinic connection between

the stable and unstable manifolds of the same periodic orbit. If exact homoclinic

connections are not observed, periapses of the manifolds that almost intersect in the

full phase space are recorded, and the periapse information for one of the “close”

points may be used as the transfer point, at which performing a small maneuver

from the original manifold may satisfy mission objectives. The design goals of this

analysis also focus on the physical regions of periapses near certain altitudes from

the Earth for transfer design. Since a periapse has no radial velocity, an impulsive

maneuver to/from a manifold trajectory from/to an initial orbit around the Earth

would indicate a tangent burn at the periapse location (completely perpendicular to

the radial direction defining the periapse). Both types of maps as well as some of

these applications are explored in the next chapter.

3.3.2 Periapsis Poincaré Maps Displaying Near-Earth Trajectories

The second type of periapsis map in this investigation uses initial conditions in

polar coordinates of the form 𝑋⃗0 = [𝑟0 𝜃0 𝑟̇0 𝜃0] where 𝜃 is the angle measured

counter-clockwise from the 𝑥-axis in the configuration space. Trajectories beginning

with periapses where 𝑟0 is defined at GEO altitude for the planar CR3BP are used,

where 𝜃 is incremented around the Earth in steps of 10∘, determining 36 different

trajectories for the map. The 𝑟̇0 component is zero for each initial condition from the
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definition of periapsis, and the 𝜃 value is determined from a given 𝐽𝐶 for the map. The

sign of 𝜃 in this analysis was defined as positive, giving trajectories that are initially

prograde with respect to the Earth. Although all trajectories are initially prograde,

subsequent periapse points may be prograde or retrograde, in general. These maps

are color-coded according to each trajectory’s condition at the end of the integration

time, arbitrarily chosen to be 155 revolutions of the primaries (about 11.5 years).

Trajectories that stay “bounded” within the Earth region are recorded in one color,

while trajectories that pass through the 𝐿1 “gateway,” or the 𝐿2 “gateway” when

they are open are represented in a different color. The periapses on the map that

are labeled a certain color belong to a trajectory that eventually has the specified

condition. This implies that if a spacecraft is on a trajectory and reaches a periapse

in one of the regions of specific periapse behavior, looking at the map will tell the

observer the end condition of the spacecraft. Applications of these maps may include

mission design with a desired end behavior, as well as the analysis of the predictability

of an observed trajectory (seen in Section 4.3).

3.4 Chapter 3 Summary

In this chapter, the specific numerical methods used in this investigation are in-

troduced and derived. Single- and multiple-shooting algorithms are explained, which

will be used to find a trajectory solution from one point in the Earth-Moon system

to another. A pseudo-arclength continuation method is described, using points satis-

fying the CR3BP periapsis condition to find periodic resonant orbit family members.

These methods are applied in specific design scenarios, each contributing to final

mission designs presented in the next chapter. The multiple-shooting code that is

imbedded in the pseudo-arclength continuation algorithm is used to find single reso-

nant orbits. Test Case I uses the 4:3 periodic resonant orbit family members found
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in the PAC process to find an initial guess for a multiple shooting algorithm that is

employed to find a transfer trajectory to and from Earth-centered orbits. Finally, a

description of the periapsis surface of section and the associated Poincaré maps are

introduced. Both Test Case II and Test Case III implement periapsis Poincaré maps.

Test Case II examines the periapsis map of invariant manifold trajectories from a

Lyapunov orbit about the Earth-Moon 𝐿1 libration point. This map shows the stable

and unstable periapse points in different colors to show opportunities for transfer

using these trajectories. Test Case III examines periapsis Poincaré maps displaying

periapse information for a set of orbits starting near GEO altitudes (while remaining

in the Earth-Moon plane). These points are colored according to the behavior of

the orbit by the end of the integration time. These maps may be used to design a

mission with a desired “end” behavior (at least by a specified integration time) or to

use observed periapse information of an unknown spacecraft trajectory to determine

the behavior of the unknown orbit.
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4. Test Cases: Results and Analysis

Test cases and specific scenarios are observed using the tools mentioned in Chapter

3 aid in mission design. The analysis following each test case also offers some dis-

cussion of the advantage to the “warfighting mission assurance.” The Space Domain

Mission Assurance: A Resilience Taxonomy white paper put out by the Office of the

Assistant Secretary of Defense for Homeland Defense and Global Security describes

the concept of “resilience” in space systems as the “warfighting mission assurance

benefit” [12]. The paper examines three interrelated approaches for mission assur-

ance: (1) “Defensive Operations” (actions made to provide insight of an unknown

spacecraft’s operations), (2) “Reconstitution” (bringing new components on-line as

a plan for contingency or to replace decommissioned assets), and (3) “Resilience”

(ability of the space operations to have mission success if unforeseen circumstances

arise) [12]. Some of these approaches are enveloped in the analysis of the following

test cases.

In Test Case I, the natural shapes of resonant orbits computed by pseudo-arclength

continuation are examined to choose an initial resonant orbit arc to use to determine

initial patch points to input in a multiple-shooting algorithm. This multiple-shooting

algorithm searches for a solution that transfers a spacecraft from perigee of an initial

geosynchronous transfer orbit to a final geostationary orbit for less Δ𝑉 than standard

transfer methods. The results of this design process are compared to the “nominal

trajectory” in the AsiaSat-3/HGS-1 rescue mission as well as to the values for two-

body transfer methods. The converged solution trajectory is propagated further,

and contingency options are explored that correspond to the “figure-8” structure

that emerges in the rotating frame. The contingency plans are examined in order to

increase the design’s “resiliency” as outlined by the white paper [12].

In Test Case II, a periapsis Poincaré map gives insight into the design space
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with information on periapses of invariant manifolds near the Earth. The stable and

unstable manifold trajectory approximations are represented in different colors on

the map, and a transfer is designed between Earth-centered orbits in the plane of the

Earth and Moon. The initial orbit is a “Tundra” orbit that has apogee and perigee

altitudes close to that of a standard Tundra orbit about the Earth, but is not a true

Tundra orbit because it is in the plane of the Moon’s orbit about the Earth. The final

orbit for this case is a “GEO-like” orbit also in the plane of the primaries that has a

final altitude slightly smaller than typical GEO. The design’s “resilience” as referred

to in the aforementioned white paper is also increased, as contingency options are

also explored for this test case.

In Test Case III, the second type of periapsis Poincaré map is examined. Maps

of multiple energy levels and integration times are presented. The periapse points

on the map are color-coded according to the behavior of an orbit at the end of the

chosen integration time. Orbits that start near GEO altitudes are examined on these

maps and colored according to whether they impact the Earth or Moon, stay around

the Earth region, or depart the Earth region. The applications of these maps as a

means for transfer design when specific “end” behaviors are desired at the end of an

integration time are discussed. The potential for these maps as a tool for predicting

the future behavior or location of an unknown spacecraft is also explored, offering

utility as a “defensive operation” described by the white paper [12].

4.1 Test Case I: “Rescue” Mission

To demonstrate the potential mission design capabilities of resonant orbits by ex-

ploiting the natural resonant orbit shape and to showcase the utility of robust target-

ing algorithms, a transfer scenario is created to closely resemble the AsiaSat-3/HGS-1

“rescue” mission described in Section 1.3. Consider a spacecraft left “stranded” in
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a geosynchronous transfer orbit (GTO) due to thruster misfiring (as in the AsiaSat-

3/HGS-1 mission) or similar malfunction. The final desired mission orbit is a geosta-

tionary orbit (GEO) with zero inclination. The Δ𝑉 required to perform a combined

plane change and circularization maneuver at apogee of the GTO to insert into the fi-

nal mission orbit is not possible with the available propellant on board the spacecraft.

Fortunately, a higher-altitude transfer using the Moon as a gravity source to “fly-by”

can be used to insert the spacecraft into GEO with a lower Δ𝑉 requirement. The

scenario setup is seen in Figure 25, comparable to the “nominal trajectory” mission

setup as described by Ocampo for the AsiaSat-3/HGS-1 mission [6]. Note the first

maneuver (Δ𝑉1) is constrained to take place at perigee of the GTO, though it is not

constrained to be a burn tangent to the inclined orbit in this scenario.

To Moon 

Ascending 
Node of 
GTO/Transfer 
Burn Location 

Initial GTO 

Earth’s 
Equatorial 
Plane 

Final GEO 

𝒊 = 𝟓𝟓.𝟔𝟔𝟔𝟔 

Figure 25. Zoomed View of Notional Mission Setup for Initial Geosynchronous Transfer
Orbit (GTO) Transfer to Final Geosynchronous Orbit (GEO).

In order to fully compare the transfer process with the AsiaSat-3/HGS-1 mission

“nominal trajectory,” the epoch of 25 January 1998 was used, and in this investigation,
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the ascending node of the initial GTO was defined to be in line with the ascending

node of the Moon’s orbit about the Earth at the initial time, 𝑡0. According to the Jet

Propulsion Laboratory (JPL) HORIZONS web-interface data with the defined epoch,

on this date, the Moon’s inclination was 18.6003∘ with respect to Earth’s equatorial

plane. A constant inclination of 19∘ was used in both Ocampo’s analysis and in this

investigation for more equivalent comparison. This date also corresponds to a specific

lunar right ascension of the ascending node or, Ω = 5.26∘, and the specified setup of

the Moon in this scenario defines 𝜑 = 𝜔+ 𝜈− 𝑡 = 90∘− 𝑡, where 𝜔 is the argument of

perigee of the Moon and 𝜈 is its true anomaly. A notional illustration of these initial

angles is seen in Figure 26.

To Vernal 
Equinox 

Moon’s Orbit 

Earth 

Moon’s 
starting 
position 

Figure 26. Notional Mission Setup of Earth and Moon Positions for Initial Geosyn-
chronous Transfer Orbit (GTO) Transfer to Final Geosynchronous Orbit (GEO) via
Lunar Fly-By.

Knowing that lunar fly-bys take advantage of the gravity of the Moon in a momen-

tum transfer as the spacecraft approaches and departs close to the body, a resonant

orbit with the same basic characteristics may be chosen as a model on which to base

an initial guess for the transfer. A pathway shape is roughly defined between the ini-

127



tial GTO and final GEO that resembles a piece, or an “arc,” of a resonant orbit that

uses the gravity of the Moon to change inclination from the highly inclined GTO to a

minimally inclined GEO-altitude orbit. The 4:3 resonant orbit families were studied

in greater detail in order to choose an appropriate resonant arc to use in the targeter.

Recall the collection of the planar and axial 4:3 resonant orbit families in Figure 27.
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Figure 27. Planar and Axial Members of Periodic 4:3 Resonant Orbit Family.

The 4:3 resonant orbits in Figure 27 are computed with a pseudo-arclength con-

tinuation scheme that takes advantage of periapses as patch points. All members of
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the family shown are classified as unstable periodic orbits that travel through four

orbits about the Earth in the same time that the Moon completes three revolutions

of the Earth. The 3-D family members of this family are found by perturbing the

planar bifurcation orbit by adding a small initial velocity in the out-of-plane direc-

tion, 𝑧̇0. The other out-of-plane members are computed using the same PAC method

as the planar members. Once this resonant orbit family is identified as a potentially

useful orbit family for the “rescue” scenario, an “initial guess orbit” is identified. A

specified segment, or the resonant arc, of this chosen orbit is used to generate patch

points for a targeting algorithm that will constrain the locations of the initial and

final maneuver points (from perigee of the GTO to any point on a GEO), giving

freedom to the internal patch points to move. The initial guess orbit chosen from a

collection of planar and 3-D 4:3 resonant orbit families is seen in Figure 28.

This orbit is chosen by a numerical process that compares an approximated initial

state at perigee of the GTO to each state of a resonant orbit for every time step in the

numerical integration of the orbit. The approximated initial state estimates the first

maneuver using the initial Δ𝑉 magnitude used for the “nominal trajectory” in the

AsiaSat-3/HGS-1 mission. This process is continued for all orbits in the collection

of the 4:3 resonant orbit family. The orbit that possesses the minimum difference

between this state and the approximated initial maneuver state is then chosen as the

initial guess orbit. The location of the point with the minimum difference in the phase

space with the approximated initial maneuver point is highlighted in Figure 28. The

Earth-centered inertial frame view of this chosen resonant orbit is seen in Figure 29,

with the resonant arc highlighted in blue.

Five patch points were used to input into a multiple-shooting algorithm. Three

patch points evenly spaced in time along this magenta arc are input, along with

the approximated initial state at perigee of the GTO, and an approximated end
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Figure 28. Orbit Chosen from a Collection of Planar and 3-D 4:3 Resonant Orbit
Families to Produce Initial Guess Patch Points for Multiple-Shooting Algorithm.
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Figure 29. Orbit Chosen from a Collection of Planar and 3-D 4:3 Resonant Orbit
Families to Produce Initial Guess Patch Points for Multiple-Shooting Algorithm in
Earth-Centered Inertial Frame.
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state located in GEO using two-body velocity values. The targeter allowed all patch

points, except the initial position in the GTO, to vary (in both position and velocity)

in order to converge to a continuous, “flyable” trajectory. The constraints vector that

was driven to zero for this algorithm included all states of the five patch points (both

position and velocity values). The trajectory was converged to within a total tolerance

of 10−12 nondimensional units, which, if all components of each state in the vector

shared equal error, corresponds to each patch point location component having an

accuracy to within 1.28× 10−4 cm and each velocity component in each state having

an accuracy to within 3.42× 10−10 cm/s. The converged trajectory shown in Figures

30 and 31 yields a path similar to the resonant orbit arc, beginning at the specified

point and ending the trajectory near GEO.

The converged trajectory specifications are seen in Table 2 as they compare to the

“nominal trajectory” design for AsiaSat-3/HGS-1 as well as a two-body calculation for

the Δ𝑉 requirement to perform the inclination change from the GTO to GEO. Recall

the first maneuver was constrained to stay at the same position, but the velocity was

able to vary using the targeter. The resulting first burn was slightly off the tangent

direction from perigee of the GTO, pointing slightly below the plane of the GTO. The

second and final burn occurs at the end of the fly-by transfer arc when the trajectory

reaches GEO altitude. The natural dynamics of the transfer arc take advantage of the

gravitational field of the Moon, performing an inclination change from 𝑖 = 51.619∘ in

the initial GTO to 𝑖 = 9.55∘ in the final orbit. The cost of performing a combined

plane change and circularization maneuver at this final point is documented in Table

2 and incorporated into the final calculations.
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Figure 30. Converged Spacecraft Trajectory Transferring from Initial GTO to Final
GEO via Lunar Fly-by in Barycentric Rotating Frame.
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Figure 31. Converged Spacecraft Trajectory Transferring from Initial GTO to Final
GEO via Lunar Fly-by in Earth-Centric Inertial Frame (Left: 3-D Inertial View, Right:
Inertial x-y View).
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For all situations compared in Table 2, the initial GTO orbit inclination is defined

at 51.619∘, with a perigee altitude of 204.70 km and apogee altitude of 36, 150.20 km

(all taken from the AsiaSat-3/HGS-1 “nominal trajectory” analysis [6]).

In order to better understand the results of the “rescue” mission, the two-body

orbital elements of each leg in the transfer (initial GTO, lunar fly-by, and final GEO)

are calculated at each time step while numerically integrating each leg of the transfer.

To calculate the osculating (instantaneous) orbital elements of the orbits and trajec-

tories numerically integrated in the CR3BP, a rotation from the barycentric rotating

frame of the CR3BP to the geocentric equatorial frame is necessary. The osculat-

ing orbital elements are expressed in an Earth-centered, inertial reference frame with

angles measured with respect to the geocentric equatorial plane referenced by the

vernal equinox direction and the stars that are sufficiently “fixed” in space [8]. The

osculating orbital elements of the trajectories computed in the numerical simulation

are also based on the Moon’s osculating elements at the selected epoch [32]. The

process begins by transforming the state vectors in the barycentric rotating frame

generated in the numerical simulation to corresponding vectors in the Earth-centered

inertial frame of the CR3BP along each time step with the transformation seen in

Section 2.6. Recall that the Earth-centered inertial frame is based on the plane of

the primaries and is initially aligned with the rotating frame. The conversion from

the Earth-centered inertial frame of the CR3BP to the geocentric equatorial refer-

ence frame is a 3-1-3 set of rotations through the Euler angles: right ascension of the

ascending node, Ω, inclination, 𝑖, and 𝜑 = 𝜔 + 𝜈 − 𝑡, all defined in Figure 26. The

osculating elements for a spacecraft starting in a highly inclined GTO that maneuvers

to perform a fly-by of the Moon, decreasing in inclination as it travels back toward

the Earth to perform a combined plane change and circularization manuever to ulti-

mately arrive in GEO, are seen in Figure 32. Each osculating element in Figure 32
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Figure 32. Osculating Elements of Full Transfer Mission from an Initial Geosynchronous
Transfer Orbit (GTO) to Final Geosynchronous Orbit (GEO) via Lunar Fly-By.

show three separate stages of the transfer: initial GTO, lunar fly-by, and final GEO.

The osculating semi-major axis and eccentricity each show initial “jumps” from the

GTO to the fly-by trajectory (≈ 0.2 days in Figure 32), indicating the change from

an orbit with a relatively smaller semi-major axis and eccentricity of 0.75. After this

transition, semi-major axis and eccentricity both increase, reflecting the insertion

onto the fly-by trajectory. Notice the eccentricity of the fly-by trajectory approaches,

but does not reach, the value of one. This indicates that the fly-by trajectory does

not “escape” the influence of the Earth, but remains as a “closed” orbit in the system

for the duration of the lunar encounter. This detail foreshadows the contingency op-

tions explored in the next section, observing how the fly-by trajectory, if propagated

further, returns repeatedly to close to its initial altitude from the Earth. With the

insertion into GEO (≈ 12.2 days in Figure 32), semi-major axis decreases, but ends at

a value larger than the original. Eccentricity drops to zero, indicating the maneuver
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to final, circular GEO. Finally, the inclination at the first maneuver at ≈ 0.2 days

is nearly undetectable without the information from the above osculating elements

since the first burn is nearly tangent to the initial GTO. The fly-by trajectory ends at

GEO altitude with an inclination of 9.55∘, and a final, nontangent burn is performed

here to insert the spacecraft into its final GEO.

4.1.1 Test Case I: Analysis

The differences between the AsiaSat-3/HGS-1 “nominal trajectory” and the con-

verged trajectory in this investigation offer insight into the nature of the problem

as they are examined. The differences between the two problems originate in the

different targeting algorithms designed in a CR3BP model. The scenario presented in

the previous section aligns the ascending node of the GTO with the ascending node

of the Moon’s orbit. This detail stays fixed, also fixing the GTO’s right ascension

of the ascending node, Ω𝐺𝑇𝑂, argument of perigee, 𝜔𝐺𝑇𝑂, and the definition of the

Moon’s location in time. In the setup in the AsiaSat-3/HGS-1 mission, a numerical

targeting algorithm found the locally optimal trajectory for the lowest Δ𝑉 possi-

ble. This targeter used a design variable vector that did not use the states of patch

points; it included the initial time defining the location of the Moon at GTO perigee,

the right ascension of the ascending node of the GTO, the argument of perigee of

the GTO, the Δ𝑉 , and the time of flight as design variables for the lowest Δ𝑉 .

The multiple-shooting algorithm used in this investigation is not designed to give an

optimal solution, so no claims of optimality can be made for the solutions in this

investigation.

Another difference is the fixed tangent burn maneuvers in the AsiaSat-3/HGS-1

“nominal trajectory.” The algorithm in the present investigation did not restrict the

maneuvers to tangent burns. The last difference observed between the solutions is
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that the final inclination in Ocampo’s paper was forced to end at zero, while the end

condition in this investigation looked for an end altitude equivalent to GEO altitude,

at any inclination. The nature of the patch point method in multiple-shooting cre-

ated a scenario where either the final location is fixed (also fixing GEO’s Ω), not

allowing for any other GEO insertion options at another point on the final orbit, or

the simulation must stop numerically integrating when the trajectory reaches GEO

altitude. The design in the current investigation opted for the latter choice which

considers a combined plane change and circularization maneuver at the end point.

Another option that would be available instead of this plane change is to perform the

circularization burn (with no plane change) to get into an inclined “GEO” orbit and

let the Moon’s natural perturbations decrease the inclination. These perturbations

were utilized in the actual AsiaSat-3/HGS-1 mission, with a preliminary model that

forced a constraint to obtain a favorable ascending node (necessary to take advantage

of the Moon’s perturbations) with higher fidelity compared to the AsiaSat-3/HGS-1

“nominal trajectory” [6].

Finally, note that the orbital setup designed to replicate conditions in Ocampo’s

“nominal trajectory” and the coordinating converged trajectory are designed to specif-

ically correspond to the epoch of 25 Jan 1998, where the inclination of the Moon with

respect to the Earth’s equatorial plane is modeled to be 19∘. The outcome of the

transfer in this investigation only depends on the inclination of the Moon with re-

spect to the Earth’s equatorial plane, and not on the Moon’s other initial orbital

elements. The inclination of the Moon with respect to Earth’s equatorial plane actu-

ally oscillates between about 18.29∘ to 28.59∘ in a cycle that lasts roughly 18 years

for the inclination starting at the minimum to return back to the same minimum

value [83,84]. As reported by the JPL Horizons web-interface, future dates when the

Moon’s inclination returns to approximately 19∘ and the orbital configuration would
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allow for this transfer to happen include: Apr 2017, Dec 2032, Nov 2035, Jul 2051,

May 2054, and Feb 2070 [85]. As the lunar inclination moves through its 18 year cy-

cle, it passes 19∘ right before and right after it reaches its minimum of 18.29∘, which

accounts for the closer dates (Dec 2032 to Nov 2035 and Jul 2051 to May 2054). It

takes longer for the inclination to reach its maximum (28.59∘) and to come back to

19∘, which accounts for the longer times between dates (Apr 2017 to Dec 2032, Nov

2035 to Jul 2051, and May 2054 to Feb 2070).

The differences between the designs were mainly a result of different targeting

schemes, but overall, the comparison shows that the design method used in this

investigation, using a resonant arc and multiple-shooting to find a solution, offers an

alternate avenue to approach the same transfer scenario and advantageous results in

terms of Δ𝑉 compared to 2BP methods (shown in Table 2).

The design strategy in this investigation also presents several disadvantages. First,

the method of using a resonant orbit arc requires some knowledge of the basic transfer

orbit and the velocities involved. If the same design approach was to be used for

a different transfer scenario, a catalog of resonant orbit families may be examined

for potential utility in the transfer, but ultimately, it may take multiple guesses of

different resonant arcs from different families to come close to a feasible design, if such

a transfer even exists for the scenario. Also, the initial Δ𝑉 for the first maneuver at

perigee of the GTO was known to be a decent guess since it was used in the AsiaSat-

3/HGS-1 “nominal trajectory.” It may be reasonable to choose an initial speed that

causes the trajectory to leave the initial orbit and fly to near Moon altitudes, but too

much of a deviation from the speed used in this example may cause the targeter to

converge to a different solution entirely. The design mindset may be to start with the

available Δ𝑉 and decrease the value until a flyable trajectory is no longer achieved.

Though the algorithm is relatively quick to run (less than one minute to convergence),
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and this “trial and error” method may work, it is also inefficient. The simplicity in

this design also fixes the initial configuration of the GTO to the Moon’s position,

which limits the available solutions.

As stated in Section 1.5.2, the converged trajectories in this investigation are not

claimed to be optimal. The design method presented in this investigation did not

explicitly optimize the Δ𝑉 or restrict the final inclination as to see how the natural

dynamics would produce a trajectory to get from one orbit to another. Since the exact

numerical solution in the AsiaSat-3/HGS-1 report was not replicated, any observa-

tions listed below are attributed to the solution designed by the method described in

Section 4.1.

The comparison between Ocampo’s “nominal” transfer mission and the converged

design in this scenario shows that an alternate unconventional, higher altitude trans-

fer method is possible to construct, leading to a converged design with low overall

Δ𝑉 cost compared to usual, 2BP methods. When Ocampo’s design was studied in

1998, using a fly-by of the Moon was a surprising method to examine. Offering this

technique with resonant arc provides yet another way to design the same transfer,

and depending on the design constraints and specifications, this method may even

prove to be more useful in some situations.

4.1.2 Test Case I: Contingency Options

Another main advantage of the method using a resonant orbit arc for an initial

guess is the wide assortment of contingency options available that take advantage

of the converged orbit’s natural motion, increasing the design’s “resiliency” by ex-

ploring different options in case the chosen maneuver does not happen [12]. Various

contingency plans are explored for the “rescue” mission designed above. Since the

initial guess for this analysis relied on a resonant orbit, the converged transfer solution
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takes on characteristics reminiscent of a resonant orbit. If the same trajectory used

for the lunar fly-by is not terminated in GEO, propagating for five revolutions of the

primaries reveals structure similar to that of resonance. This continued orbit is seen

in Figure 33.

Figure 33. Lunar Fly-by Trajectory Propagated for 5 Revolutions of the Primaries in
Barycentric Rotating Frame.

Although the projected trajectory does not possess perfect resonance, each “petal”

of the orbit is completed in about half the time is takes for the Moon to complete one

revolution of the Earth. In other words, one approximate “period” of this trajectory is

about equal to the time it takes for the Moon to complete one orbit. If the spacecraft

waits one “period” of this orbit, this positions the spacecraft not at the original end

position (GEO altitude, inclined 9.55∘), but at the same altitude, inclined at 15.66∘.

Completing a combined plane change and circularization maneuver requires a Δ𝑉 of

1.41 km/s. Another plan may be to end in an inclined high-LEO mission orbit. The

first option for transfer would be to wait 12.08 days (just a few hours longer than

the original plan), and ending at an altitude of 1, 563.25 km, inclined at 17.70∘ with

a final transfer Δ𝑉 of 3.83 km/s. Figure 34 shows the 𝑥-𝑦 view of the fly-by orbit

propagated for 12.08 days to insert into a final LEO orbit in both the barycentric
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rotating frame.
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Figure 34. Trajectory Transferring from Initial GTO to Final LEO via Lunar Fly-by in
Barycentric Rotating Frame (𝑥-𝑦 view).

This trajectory returning to LEO after 12.08 days is seen in the Earth-centered

inertial frame in Figure 35. Notice the “petal” structure seen in the rotating frame

is undetectable in the inertial frame, where the transfer appears as a large ellipse.

Consider a scenario with the same setup, but the goal of the transfer investigation

is now to characterize the opportunity to make the final burn into GEO at some

later phasing time, taking advantage of the loose structure of the orbit. This problem

is reminiscent of a coplanar rendezvous scenario where an “intercepting” spacecraft

needs to wait a specific amount of time before transferring to rendezvous with a

“target” satellite in a different orbit. In this case, the “intercepting” spacecraft is

traveling on this “figure-8” orbit and the target’s position is in the final “GEO” or

LEO altitude orbit. Table 3 summarizes the times at which the spacecraft would

“return” to an inclined “GEO” or LEO altitude orbit (to within 3.84 km of 35, 000

km or 600 km for “GEO” and LEO altitudes, respectively). Total integration time

for this analysis is about 1.25 years from the first maneuver at perigee of the GTO.
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Figure 35. Trajectory Transferring from Initial GTO to Final LEO via Lunar Fly-by in
Earth-Centered Inertial Frame (Left: 3-D View, Right: 𝑥-𝑦 view).

Returning inclinations and Δ𝑉 values for circularization maneuvers into the final

orbits are also listed. Notice the return to the “GEO” altitude orbit after one “period”

and the return to the higher-altitude LEO after 12.08 days are not listed since the

final altitudes examined are constrained to more common “GEO” and LEO altitudes.

Observing Table 3, the returns for “GEO” altitudes seem to occur every 12-14 days

(with a few outlying returns that reach up to around 100 days between them). This

seems to make sense when recognizing that the “period” of this orbit is about half that

of the period of the primaries, or about 13.64 days. The inclination values of these

returns (ranging on average between 30∘ and 65∘) are seemingly random at first, but

a broad pattern can be seen in about every other (or every two) returns, switching

between a lower and higher value of the total inclination range. A wider range of

return altitudes may also be observed for a larger list of potential final maneuver

points.
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Table 3. Times, Altitudes, Inclinations, and Final Maneuver Δ𝑉 Values of Approximate
Returns to Inclined “GEO” or LEO by a Lunar Fly-By Transfer Trajectory Propagated
for 1.25 Years Since First Maneuver.

Time from First Final Final Δ𝑉 Value for Maneuver
Maneuver (days) Altitude (km) Inclination (∘) into Final Orbit (km/s)

25.95 1, 199.14 43.13 2.905331
26.05 34, 998.44 43.20 1.050479
38.64 34, 997.38 8.65 1.050614
135.38 35, 000.55 67.72 1.049951
147.43 35, 003.73 31.90 1.049836
173.28 34, 999.62 26.30 1.050069
188.14 35, 000.30 61.22 1.049960
216.81 34, 997.54 62.12 1.049971
230.58 35, 003.10 32.77 1.049666
261.38 35, 003.05 46.72 1.050069
277.64 34, 999.08 51.99 1.050385
293.52 34, 997.78 66.12 1.050090
324.35 35, 001.02 59.46 1.049991
338.27 34, 999.19 21.43 1.050025
368.94 35, 003.19 46.22 1.050205
384.90 35, 003.17 56.98 1.050576
401.10 35, 000.36 65.41 1.050345
416.74 35, 002.94 37.24 1.049742
446.24 34, 999.00 28.69 1.049835
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A different conclusion can be drawn from the LEO observations. In the time of

2 years from the initial maneuver from the GTO, only one return to LEO altitude

between 200−1200 km exists at about the 26 day mark. The LEO returns were then

propagated for 3 more years, the results of which are in Table 4.

Table 4. Times, Altitudes, Inclinations, and Final Maneuver Δ𝑉 Values of Approximate
Returns to LEO by a Lunar Fly-By Transfer Trajectory Propagated for 5 Years Since
First Maneuver.

Time from First Final Final Δ𝑉 Value for Maneuver
Maneuver (days) Altitude (km) Inclination (∘) into Final Orbit (km/s)

25.95 1, 199.14 43.13 2.905331
1, 390.86 599.85 34.22 3.035707
1, 403.95 600.24 24.96 3.035615
1, 416.72 602.83 53.82 3.035009
1, 428.45 600.90 54.59 3.035455
1, 440.17 600.99 39.29 3.035434
1, 452.26 600.68 64.84 3.035508
1, 464.67 602.84 29.72 3.035014

These returns seem to happen about every 12 − 14 days as well, with variable

inclinations at return, which reveal a similar pattern as the “GEO” returns. For the

first and second returns, the inclinations are about 10∘ and are in the lower range of

observed inclinations for the LEO returns (about ≈ 25∘ − 35∘). The third and fourth

returns are about 1∘ apart, in the higher range of observed inclinations for the LEO

returns (≈ 55∘ − 65∘). Each individual return then comes back to about the same

altitude (600 km) every 13 days or so, alternating between a “lower” or “higher”

inclination. This loose pattern may be useful for predicting returns to LEO altitudes,

or to assist in solving a rendezvous/phasing problem with one of the many satellites

in low Earth orbit today.

In examining the future options for returns to LEO and “GEO” altitudes, insight

is gained about the structure of this converged trajectory path. Rather than using

a computer algorithm to simply get the spacecraft from the initial point to the final
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point, the trajectory calculated using the design method employing a resonant arc

gives options for alternate mission goals. Space assets are expensive, in terms of both

cost to get a spacecraft into orbit and the onboard technology, with the potential for

knowledge gained once in orbit. Looking at the contingency options available due to

the structured “figure-8” pattern of the trajectory may offer vital mission alternatives.

This design method therefore offers low-Δ𝑉 solutions to both the problem presented

and future transfer opportunities. The phasing options for this “figure-8” patterned

(but not resonant) orbit lead to many transfer opportunities, all of which are explored

by examining the trajectory in the rotating frame.

4.2 Test Case II: Planar Orbit Transfer Design

The previous test case shows how designing in the CR3BP may give advantageous

mission options to consider for a satellite in its geosynchronous transfer orbit and/or

that has a large inclination change to overcome in order to reach the final orbit. Fur-

ther investigation of the Moon fly-by transfer used in this design suggests connections

to other behaviors examined in the CR3BP. The next transfer example is simplified

further by considering a planar transfer. The planar case does not provide the same

obstacles as a spatial problem would (like potential inclination changes) since a tra-

jectory beginning in the plane (in both position and velocity) of the Earth and Moon

will remain in the plane for all finite time in the CR3BP. Examining the planar case

provides analysis of nearby behaviors in the plane that may naturally lead to obser-

vation of similar behaviors out of the plane and apply to 3-D applications. Periapsis

Poincaré maps of planar orbits are utilized here to examine transfer opportunities.

Consider a scenario where a spacecraft in a planar “Tundra” orbit is scheduled or

re-tasked to a final mission orbit in a planar “GEO” orbit. A notional representation

of this scenario is seen in Figure 36. The goal of this test case is to design an
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“unpredictable” pathway between the initial and final orbits. Invariant manifold

trajectories associated with an unstable periodic orbit about the Earth-Moon 𝐿1

libration point are employed to let a spacecraft in the “Tundra” orbit travel in a

seemingly random pattern until the spacecraft is ultimately inserted into its final

mission orbit for similar Δ𝑉 as compared to conventional transfer methods.

To Moon 

Initial 
“Tundra” 

orbit Final “GEO” 

Earth 

*Both orbits in the plane of 
the Earth and the Moon 

Figure 36. Zoomed View of Notional Mission Setup for Transfer from Initial “Tundra”
Orbit (green) to Final “GEO” (red), Both in the Plane of the Primaries.

Conventional, inclined Tundra orbits may have potential future military capabil-

ity, classified into a broad category of highly inclined, highly elliptical orbits (HEOs).

HEOs are home to the X-Ray Multi-Mirror Mission (XMM-Newton) designed by the

European Space Agency (ESA), studying celestial X-ray sources unblocked by the

Earth’s atmosphere, and the ESA’s International Gamma-Ray Astrophysics Labo-

ratory (INTEGRAL), characterizing the gamma-ray sources with sophisticated de-

tecting and mapping instruments [86, 87]. XMM-Newton and INTEGRAL perform

their missions in HEOs with inclinations of about 67.2∘ and 51.6∘, respectively [88,89].

These missions take advantage of HEO’s distance from Earth’s atmosphere and range
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of observing distances both toward the Earth and other areas of the system, while

appreciating the continuous communication with 48 and 72 hour orbital periods, re-

spectively [86, 87]. Tundra orbits are similar to Molniya (or Russian “lightning”)

orbits in that they both utilize a unique 63.4∘ inclination that prevents the orbit’s 𝜔

precession due to J2 perturbations. Both have a high-altitude apogee, allowing long

dwell time and periods of contact in apogee, fixed in the northern hemisphere due to

the critical inclination. Tundra and Molniya orbits are useful for Earth observations,

filling the gap north of 55∘ that GEO satellites miss [11]. Tundra orbits also have

an orbital period of exactly one sidereal day, while Molniya periods are half of this,

roughly 12 hours [11]. Spacecraft in Tundra orbits return to the same position over

the Earth each sidereal day, but they do not remain over the Earth in a fixed posi-

tion like geostationary spacecraft [11]. Tundra orbits specifically are home to Sirius

Satellite Radio and the Russian EKS satellites, part of an early warning constellation

designed for missile detection [90].

The initial “Tundra” orbit in Test Case II, as mentioned earlier, remains in the

plane of the primaries, defined by Tundra altitudes (70, 648.676 km apogee and 1, 000

km perigee) and has an orbital period equal to one sidereal day. Note that actual

Tundra orbits are designed to have a critical value for inclination equal to 63.4∘, which

is not true for the planar “Tundra” orbit in this test case. While a planar “Tundra”

orbit is periodic in the inertial frame, the rotating frame of the CR3BP shows how

the apogee (and perigee) point of the orbit changes as the Moon rotates about the

Earth. This pattern is seen in Figures 37 and 38.
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Figure 37. Initial “Tundra” Orbit in Barycentric Rotating Frame of the CR3BP.

Figure 38. Initial “Tundra” Orbit in Earth-Centered Inertial Frame of the CR3BP.

A final mission orbit is defined by a “GEO,” or GEO-like orbit, also in the Earth-

Moon plane, defined slightly smaller than actual GEO altitude, at 33,699.789 km

altitude. Since this orbit is circular, the trajectory appears periodic in both the

inertial and rotating frames and will be characterized as a periodic, circular orbit
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in this scenario (although further analysis would reveal that a GEO orbit in the

rotating frame would deviate from an exact periodic path). Conventional two-body

Hohmann transfer option Δ𝑉 s from “Tundra” to “GEO” are compared to a transfer

with an unpredictable pathway in Table 5. In order to examine unpredictable path

options, approximations of stable and unstable manifold trajectories associated with

a Lyapunov orbit around the Earth-Moon 𝐿1 libration point are propagated from

the unstable periodic orbit in negative and forward time, respectively. The manifold

“tube” structure approximations are projected in the configuration space in Figures

39 and 40, propagated for about two months.

Figure 39. Stable and Unstable Invariant Manifold “Tube” Approximations Associated
with Unstable Periodic 𝐿1 Lyapunov Orbit in Barycentric Rotating Frame (𝐽𝐶 = 3.1327).
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Figure 40. Zoomed View of L1 Region with Stable and Unstable Invariant Mani-
fold “Tube” Approximations Associated with Unstable Periodic 𝐿1 Lyapunov Orbit in
Barycentric Rotating Frame (𝐽𝐶 = 3.1327).

Continuing the propagation for 300 revolutions of the primaries (or about 22

years), a periapsis Poincaré map is generated. The map in Figure 41 shows the

periapses for 80 total stable (orange) and unstable (purple) manifold trajectories

“originating” from the Lyapunov orbit in negative or forward time. Notice the ZVCs,

the blank space between the ZVCs, and the region where the periapse points exist.

Based on the definition of periapsis, the blank region surrounding the points on the

map and near the interior boundary of the ZVCs is where apoapsis points would

occur. The “holes” within the region of periapse returns are empty because the

specific manifold trajectories chosen do not have returns in these areas. Poincaré

maps may be defined in terms of all apses, or alternately apoapsis points, but points

of periapsis were chosen for this investigation to uniquely choose initial conditions and

display locations of points closer to the Earth. Periapses are typically the traditional

choice in literature for these reasons.
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“Forbidden Region” 

Moon 

Earth 

Figure 41. Periapsis Poincaré Map for Stable and Unstable Invariant Manifold Ap-
proximations Associated with Unstable Periodic Lyapunov Orbit About Earth-Moon
𝐿1 in Barycentric Rotating Frame, 𝐽𝐶 = 3.1327, 80 Trajectories Numerically Integrated
for 300 Revolutions of the Primaries (About 22 Years).

Periapse points of these trajectories are potentially useful near the Earth, or at

“Tundra” or “GEO” altitudes, when considering transfer opportunities to or from the

specified orbits. Periapsis, by definition, determines a point where the magnitude of

the radial velocity (from the Earth to the periapse position, in this case) is zero, so the

velocity at this point is completely in a direction perpendicular to the radial direction

defining the periapse. This means that if a spacecraft is at the apogee or perigee

location in an Earth orbit and also satisfies the periapsis condition of a manifold

trajectory, the positions would intersect, and a maneuver to/from the “Tundra” or

“GEO” orbits would be possible. An impulsive burn (Δ𝑉 ) at these specific points

would also be exactly tangent to the Earth orbit by the definition of the manifold

periapsis. Exploiting this idea, the periapsis Poincaré map is examined near planar

“Tundra” apogee altitudes; zooming in to the Earth region, Figure 42 shows potential
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periapse points near “Tundra” apogee altitude in the highlighted region.

Earth 
“Tundra” Apogee 

Altitude 

Figure 42. Zoomed View of Periapsis Poincaré Map for Stable and Unstable Invariant
Manifold Approximations Associated with Unstable Periodic 𝐿1 Lyapunov Orbit in
Barycentric Rotating Frame, Showing “Tundra” Altitude Locations, 𝐽𝐶 = 3.1327, 80
Trajectories Numerically Integrated for 300 Revolutions of the Primaries (About 22
Years).

A periapse belonging to the approximation of an unstable manifold trajectory

at one of these points was chosen to perform a tangent impulsive maneuver from

the apogee of the planar “Tundra” orbit. The manifold trajectory on which this

periapse resides initially departs from the unstable periodic orbit in forward time,

then meets up with this chosen periapse point. The unstable manifold trajectory can

then be propagated further in time from this point to see where a spacecraft that

has maneuvered onto the manifold will travel. The transfer from planar “Tundra”

(green) to the unstable manifold (purple) is seen in Figure 43.
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Figure 43. Maneuver from Initial “Tundra” Orbit to Stable Manifold Trajectory in
Barycentric Rotating Frame.

Other transfer opportunities that are observable from the periapsis map are po-

tential homoclinic connections between the stable and unstable invariant manifolds

in the full phase space (position and velocity). Homoclinic connections can be found

while generating the map by calculating the “distance” (in the full phase space) be-

tween periapse points for all the trajectories represented on the map and finding

where these “distances” are close to zero (to within a 10−12 tolerance). This type of

connection would require zero-Δ𝑉 to get from one manifold trajectory to another,

and therefore a spacecraft could depart the periodic LPO and eventually return back

to the same LPO for “free.” A homoclinic connection was not used for this test case

because all potential intersecting points in this scenario correspond to extremely long

times of flight for the transfer (multiple years). Another type of opportunity that may

be calculated while generating the map is an intersection of the stable and unstable

manifolds in only position. A position intersection could allow for a transfer from one

trajectory to another with a small Δ𝑉 . Particularly if the trajectories are observed
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to be traveling in the same direction with respect to the Earth, this velocity discon-

tinuity is potentially extremely small. The unstable manifold trajectory maneuvered

to from the “Tundra” orbit in this scenario is observed to have a “close enough”

periapse intersection with an approximation for a stable manifold trajectory. This

intersection of periapse points in question is “close” to within a tolerance of 0.0005

nondimensional units, or about 192 km. For a maneuver, this difference between the

unstable and stable manifolds is obviously not “close enough,” and the stable and

unstable manifold trajectories each have their own “intersection points.” However,

an approximated trajectory with an initial state originating from the “intersection”

periapse of the unstable trajectory may produce a solution that resembles the stable

manifold trajectory associated with that “intersection.” The “intersection” periapses

of the stable (orange) and unstable (purple) manifold trajectories are in the region of

the periapse Poincaré map highlighted in Figure 44.
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Earth 
“Intersection” 
point between 

stable and 
unstable manifold 

trajectories 

Figure 44. Zoomed View of Periapsis Poincaré Map for Stable and Unstable Invari-
ant Manifold Approximations Associated with Unstable Periodic 𝐿1 Lyapunov Orbit
in Barycentric Rotating Frame, Showing “Intersection” Point Location Between Man-
ifold Trajectories (80 Trajectories Numerically Integrated for 300 Revolutions of the
Primaries (About 22 Years), 𝐽𝐶 = 3.1327).

This “intersection” is originally chosen for examination (rather than a more ex-

act intersection) because of the stable manifold’s behavior after its periapse at the

“intersection.” Propagating the stable manifold associated with this “intersection,”

the trajectory’s subsequent periapse point is seen to be near planar “GEO” altitude.

Figure 45 highlights the region where the stable manifold trajectory associated with

the “intersection” periapse comes close to planar “GEO” altitude orbits.

This behavior is observed for the stable manifold associated with the “intersec-

tion,” which is an unattainable trajectory from the unstable manifold, but this be-

havior may be a decently accurate indication of the behavior nearby, approximated
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Earth 
“GEO” Atitude 

Figure 45. Zoomed View of Periapsis Poincaré Map for Stable and Unstable Invari-
ant Manifold Approximations Associated with Unstable Periodic 𝐿1 Lyapunov Orbit
in Barycentric Rotating Frame, Showing “GEO” Altitude Regions, 𝐽𝐶 = 3.1327, 80
Trajectories Numerically Integrated for 300 Revolutions of the Primaries (About 22
Years).
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trajectory originating at the unstable manifold’s “intersection” periapse point. The

end position of the unstable manifold trajectory at the “intersection” periapse point

and the initial velocity of the stable manifold trajectory at its “intersection” peri-

apse point were used as the initial condition to integrate a trajectory that exactly

intersects the unstable manifold trajectory at its periapse. The magnitude of the

maneuver at this location is equal to the discontinuity between the velocity of the

unstable manifold at its periapse and the velocity of the stable manifold at its peri-

apse. The integrated trajectory has similar behavior to the stable manifold, reaching

its next periapse point near “GEO” altitude. The final maneuver to complete the

“Tundra” to “GEO” transfer is to perform a circularization maneuver at the final

periapse point of the orange trajectory to the “GEO” altitude orbit. Since this oc-

curs at a periapse, this impulsive maneuver is also a tangent burn into the planar

“GEO” orbit. The transfer from this trajectory (orange) to planar “GEO” (red) is

seen in the entire transfer representations in both the barycentric rotating frame and

Earth-centered inertial frame, seen in Figures 46 and 47.
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Figure 47. Full Transfer Plan from Initial “Tundra” Orbit to Final “GEO” Orbit Using
Stable and Unstable Manifold Trajectories in Earth-Centered Inertial Frame.
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Figure 46. Full Transfer Plan from Initial “Tundra” Orbit to Final “GEO” Orbit Using
Stable and Unstable Manifold Trajectories in Barycentric Rotating Frame.

The time of flight and Δ𝑉 values for this case as well as two body transfers from

the apogee or perigee of the “Tundra” orbit to the “GEO” orbit are seen in Table 5.
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4.2.1 Test Case II: Analysis

The process for designing a transfer from one orbit to another in the plane of

the primaries using periapsis Poincaré maps has both advantages and disadvantages.

Table 5 shows how a transfer of this type is relatively low-cost when utilizing higher-

altitude options like invariant manifold trajectories. Comparing the methods, there

is also an obvious trade-off between an unpredictable path transfer and its time of

flight. The “Tundra” perigee to “GEO” option is obviously the quickest method,

taking just hours, while the manifold transfer method requires months. Although the

maneuvers in the design use impulsive tangent burns to increase efficiency, having

one more transfer left to go through and having longer flight times in the transfer

process may introduce more opportunity for error or equipment malfunction.

There are also some other disadvantages specific to this design method. First, in

observing transfer options on the periapsis map, the velocity components of each point

on the map are not visually available. There is no guarantee that continuity in position

according to the map means that there is a continuous, “flyable” option at the chosen

point. The periapsis maps display 4-D information on a 2-D map with the chosen

surface of section and 𝐽𝐶 value. The magnitudes of velocity for both trajectories

may match exactly in an exact intersection of position, potentially indicating a zero-

Δ𝑉 transfer. However, velocity direction for both trajectories intersecting in the

configuration space must be verified to ensure that a trajectory does not require the

spacecraft to drastically switch its thruster direction when maneuvering from the

initial path. Another potentially disadvantageous observation is that the manifold

transfer depends on a particular epoch for which the “Tundra” apogee location is

in the correct setup in the rotating frame. This specific orientation in the rotating

frame needs to be taken into account when choosing a start epoch. On the other

hand, the timing issue is only observed in the rotating frame. If a spacecraft in a
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planar “Tundra” orbit is given the order to perform an orbit transfer to a new mission

orbit that was to be undetectable to anyone attempting to monitor the operations,

using the periapsis map approach with specific orientations of the initial orbit may

be beneficial.

Another downfall of this design method is that only one unstable periodic orbit

with its associated manifolds (all of the same 𝐽𝐶) were studied for transfers. Since

this design only used the manifolds between Earth orbits, the unstable periodic orbits

about the Earth-Moon 𝐿2 and 𝐿3 points may also have been examined. All different

periodic orbits that may be examined also have different associated energy levels,

which means that the potential Δ𝑉 s for similar transfers could be reduced. Although

Poincaré maps reduce the dimension of the problem, if there are not constraints that

define energy levels and specific transfer parameters, examining maps one energy level

at a time may be inefficient and tedious work.

Another design consideration relates to the integration times used for the maps.

The integration time used for a periapsis Poincaré map must also be taken into

consideration when examining the trajectories represented on the map. In order to

gain more insight into the structure of the map, longer integration times are typically

used to generate Poincaré maps. When using these maps for transfer design, a mission

planner must be wary of the solutions that would take years to complete, when a

similar transfer point may be available with a shorter time of flight. An example of

this would be to explore all potential points that may have been viable for transfer

from the planar “Tundra” orbit (which may have any argument of perigee value),

looking at all periapses at the apogee altitudes with all 𝜔 values. The different

options may have provided shorter or longer transfer times. Also, the integration

time of the map may not significantly matter if only pieces of the trajectories are

used for transfers, as they were in this scenario.
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This design is not claimed to be a globally or even locally optimal solution, but it is

a continuous solution designed using the periapsis map to take advantage of naturally

lower-energy transfers both between manifold trajectories and to/from planar Earth

orbits at periapses.

4.2.2 Test Case II: Contingency Options

As with the previous test case, there are many contingency options to explore

with this test case scenario that increase the transfer options and “resiliency” for the

mission [12]. When the spacecraft reaches the unstable manifold trajectory, there

may be either a true homoclinic connection or an exact intersection in just position

with a stable manifold trajectory. This option could provide a zero-Δ𝑉 (for a true

homoclinic connection) or a low-Δ𝑉 (exact intersection in position, and perhaps small

discontinuity in velocity) transfer option between the manifold trajectories.

Another option may be to maneuver from the initial Earth orbit directly to an

approximate stable manifold trajectory leading to the Lyapunov orbit studied to

generate the manifolds. Time of flight for this transfer from an Earth orbit depends

on the transfer point selected to insert the spacecraft onto a stable manifold leading

to the unstable periodic orbit in forward time. For a transfer point near “Tundra”

apogee altitude, time of flight is near two months to get close to the periodic orbit

selected for this scenario. Based on the first Δ𝑉 in the test case from the initial

“Tundra” orbit to the unstable manifold trajectory approximation (Δ𝑉1 = 1.546809

km/s), the required Δ𝑉 for the total transfer from “Tundra” to an LPO would be

expected to be less than 2 km/s. Since the manifold trajectories in the true, nonlinear

system approach the periodic orbit in infinite time, a very small Δ𝑉 may be performed

in order to insert into the periodic orbit from the approaching trajectory. Another

possibility could start with a spacecraft in the associated Lyapunov orbit. With
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the nature of unstable periodic orbits, a slight amount of stationkeeping may be

required to keep the spacecraft on the specified orbit already, but in theory, a small

Δ𝑉 could be performed at the precise location and direction to insert the spacecraft

onto the unstable manifold used in this test case’s scenario. The second and third

burns described in the original case could also eventually be executed, completing the

scenario in the planar “GEO” altitude orbit. If a spacecraft were already orbiting the

𝐿1 libration point in the selected orbit in this scenario and wanted to come back to a

different type of Earth orbit, a periapsis map of just the unstable manifold trajectories

associated with the periodic orbit may be useful to examine to find a trajectory that

intersects the desired altitude at a periapse.

4.3 Test Case III: Periapsis Poincaré Maps for Predicting Behaviors

In Test Case II, a periapsis Poincaré map is used to design a transfer mission from

one Earth orbit to another. Another main utility of periapsis maps is the ability to

show the long-term end behaviors of a given set of trajectories, creating a directory

of initial conditions that may be exploited for certain end behaviors. In past research

examples, periapsis maps have been generated that show the periapses of the stable

and unstable manifolds of unstable periodic orbits around libration points that may

serve as pathways into and out of the smaller primary’s vicinity at certain energy

levels. Trajectories were characterized as they continued to stay near the smaller

primary, transited through the region between 𝐿1 and 𝐿2, reached a certain number

of periapses before leaving the vicinity, etc. [30, 72, 73, 75, 76, 80, 81]. As an alternate

view of this information, spacecraft with observed periapses at the defined points

may be identified in order to predict the future outcome of that particular orbit. The

periapsis maps below are of the second type described in Section 3.3, generated to

characterize spacecraft trajectories based on future behavior. The initial conditions,
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𝑋⃗0, for the 36 trajectories represented on each map are determined by the periapsis

condition in polar coordinates. The initial positions are established by first choosing

a 𝐽𝐶 value, and then selecting a starting point in planar “GEO” (𝑟0 = 42, 164.14 km

altitude) that satisfies the periapsis condition (𝑟̇0 = 0) and varying the 𝜃 value by

incrementing around the Earth in 10∘ steps. All initial periapse points are defined

to begin moving prograde with respect to the Earth, or 𝜃 > 0. All trajectories are

then numerically integrated for a specified period of time. Maps of various Jacobi

Constant values are compared to show how the structure evolves as the energy level

is decreased (as 𝐽𝐶 is increased). Periapsis Poincaré maps of trajectories near the

Earth in the Earth-Moon CR3BP are examined to determine long-term behaviors

in the region. A map of this type, numerically integrated for 155 revolutions of the

primaries (about 11.5 years) is shown in Figures 48 and 49. Note the Earth, Moon,

and example returns are indicated on the first periapsis map but are left off on all

others in order to better observe the coded colors and structure.
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Figure 48. Periapsis Poincaré Map, 𝐽𝐶 = 2.95, 36 Trajectories Numerically Inte-
grated for 155 Revolutions of the Primaries (About 11.5 Years), Cyan=Trajectories
Departing 𝐿1 “Gateway,” Green=Trajectories “Bounded” for Integration Time,
Blue=Trajectories that Impact Earth.
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Figure 49. Zoomed View of Periapsis Poincaré Map, 𝐽𝐶 = 2.95, 36 Trajectories
Numerically Integrated for 155 Revolutions of the Primaries (About 11.5 Years),
Cyan=Trajectories Departing 𝐿1 “Gateway,” Green=Trajectories “Bounded” for In-
tegration Time, Blue=Trajectories that Impact Earth.

The green trajectories seen in each map are the trajectories that stay bounded

within the Earth interior region as defined by 𝑥 = 𝑥𝐿3 to 𝑥 = 𝑥𝐿1 and 𝑦 = 𝑦𝐿5 to 𝑦 =

𝑦𝐿4, or the ZVCs, whichever boundaries are closer to the Earth. Cyan points on the

map represent trajectories that pass through the 𝐿1 “gateway” at some point during

the integration time. In general, trajectories may pass through both “gateways”

within their lifetime, but the color reflected on the map corresponds to their first

departure from the near-Earth region. Dark blue points impact the Earth during

their lifetime. Such trajectories would not be considered for trajectory design after

an impact point, but the integration of these paths are continued and their subsequent

periapse points are still shown for their contribution to the overall structure. Notice

the map in Figures 48 and 49 corresponds to an energy level with no ZVCs on the 𝑥-𝑦

plane. A first look at this map shows many impacts to the Earth and Moon (dark

blue points), which may indicate that 155 revolutions of the primaries, or 11.5 years,
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is an excessive amount of time to observe. Maps of various energy levels are created

for trajectories that are numerically integrated for 15 revolutions of the primaries, or

about 1.12 years, seen in Figures 50 and 52.
JC
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Figure 50. Periapsis Poincaré Map, 𝐽𝐶 = 2.95, 3.0, and 3.1, 36 Trajectories
Numerically Integrated for 15 Revolutions of the Primaries (About 1.12 Years),
Cyan=Trajectories Departing 𝐿1 “Gateway,” Green=Trajectories “Bounded” for Inte-
gration Time, Blue=Trajectories that Impact Earth (Left: Barycentric Rotating Frame,
Right: Zoomed View).
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Using the periapse map defined at 𝐽𝐶 = 3.15, example trajectories of each char-

acterized type are shown in the rotating frame in Figure 51. Note that all plotted

periapses are shown on the map, and the example trajectories’ periapses are not

explicitly highlighted as it passes through the colored periapsis regions. Also, each

trajectory is numerically integrated for 15 revolutions of the primaries (about 1.12

years).

(a) (b) (c) 

Figure 51. Periapsis Poincaré Map for 36 Trajectories Numerically Integrated for
15 Revolutions of the Primaries (About 1.12 Years), 𝐽𝐶 = 3.15, Shown with Ex-
ample Trajectories Corresponding to Initial Conditions for a (a) Bounded Trajec-
tory, (b) Escape Trajectory Through the 𝐿1 “Gateway,” and (c) Impact Trajectory.
Cyan=Trajectories Departing 𝐿1 “Gateway,” Green=Trajectories “Bounded” for Inte-
gration Time, Blue=Trajectories that Impact Earth.

4.3.1 Test Case III: Analysis

As energy level changes, different behaviors appear on the maps. Since all trajec-

tories start near the Earth at planar “GEO” altitude, if the 𝐽𝐶 defined ZVCs with

a closed 𝐿1 “gateway” (or 𝐽𝐶 > 𝐽𝐶𝐿1) all trajectories remain bounded, as seen in

Figure 52 (𝐽𝐶 = 3.2), below.

As energy level increases, more trajectories pass through the 𝐿1 “gateway,” and

more cyan points are seen. Looking at a specifically colored region on the map and

choosing a point in that region allows a mission designer to use this point’s data as the
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Figure 52. Periapsis Poincaré Map for 36 Trajectories Numerically Integrated
for 15 Revolutions of the Primaries, or 1.12 Years (𝐽𝐶 = 3.15 and 𝐽𝐶 = 3.2),
Cyan=Trajectories Departing 𝐿1 “Gateway,” Green=Trajectories “Bounded” for Inte-
gration Time, Blue=Trajectories that Impact Earth (Left: Barycentric Rotating Frame,
Right: Zoomed View).

171



initial condition to then propagate the trajectory forward. Due to the time-invariance

of the CR3BP, redefining the initial conditions to a periapse that appears on the map

leads to a trajectory that adheres to the behavior of the original chosen point. For this

reason, initial conditions are not specifically labeled on the map, and all points are

potential initial conditions that will produce a trajectory with the chosen outcome.

These Poincaré maps may be used for a specific “predictability” analysis for the

trajectories. The “predictability” discussion in this investigation mainly offers insight

into the movement of unknown spacecraft as a “defensive operation,” as the prediction

of future behaviors and locations provides visual insight for the users of the maps.

Recall the transfer design in Test Case II. Mentioned in the analysis was the fact that

the initial “Tundra” orbit had to be in a specific orientation in the rotating frame in

order for the transfer to take place as designed. Examining the inertial plot of the

entire transfer (Figure 47), the insertion point onto the unstable manifold trajectory

is seemingly random as seen by the “Tundra” orbit in this frame. The potential to

then maneuver to a stable manifold trajectory is also undetectable from the inertial

frame. Applying this rationale to Test Case III, consider the example trajectory in

Figure 51 (b), shown by its periapse classification that it will depart the Earth interior

region through the 𝐿1 “gateway.” The rotating and inertial views of the beginning of

this trajectory are seen below in Figure 53.
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Figure 53. Escape Trajectory Through the 𝐿1 “Gateway” in the Barycentric Rotating
Frame and Earth-Centered Inertial Frame.

If the inertial plot of the trajectory was the only source for analysis, the figure

would show a trajectory that appears as a slightly perturbed, typical two-body or-

bit. Examining the rotating view plot shows how there is motion bounded within

the ZVCs until the trajectory finally reaches an opportunity to “escape” the Earth

interior region. While the trajectory initially appears to stay close to a reference

two-body orbit, this longer propagation shows that a spacecraft following this trajec-

tory diverges from the two-body orbit and travels away from the Earth, leaving the

Earth interior region near 𝐿1. Examining the orbit in the inertial frame shows no

other indication of the dramatic change until the trajectory actually changes. More

information is gathered in the rotating frame, where the trajectory seems to hug the

inside curve of the ZVCs, and once the trajectory is in the proper position to go

through the 𝐿1 “gateway,” the trajectory departs the Earth interior region for the

remainder of the simulation.

Studying this trajectory with the periapse map tells the observer at first glance

what to expect from the orbit, at least by a set integration time. If periapse informa-

tion of an unknown spacecraft’s orbit is observed, a periapsis Poincaré map such as
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these may give insight into where the orbit will end up in a given time period. With

exact initial conditions, a trajectory may simply be numerically integrated to predict

the outcome. With the colored regions of the map, a guess for the periapse may be

enough to narrow down the region of the map in which the point may reside. The

periapse points on the map not only show information for those specific points, but

their locations (and colors associated with their characterization) also indicate the

behavior of points in the same various regions that are not actually plotted on the

map. Any point in the region may be chosen as the initial condition to numerically

integrate a trajectory that exhibits the same behavior of the trajectories represented

by the periapse points that are plotted on the map. The condition of periapsis indi-

cates that a spacecraft approaching a periapse would be moving in a direction toward

the Earth until it reaches its periapse point, and then it would travel in a direction

away from the Earth. This description makes calculating a potential periapse point

on an unknown trajectory potentially easier, and simple changes in direction may be

observed and recorded to determine an approximate periapse.

The structural information on the map may also tell the overall behavior of the

trajectory, indicating chaotic motion, or a more ordered trajectory orbit, like a quasi-

periodic or even a periodic orbit. The stability information of these orbits may also

be available from the map. It may be possible to make a guess for the initial periapse

information of a trajectory in question, locate the potential trajectory on the map

and find that it may be a periodic orbit. If other observations confirm the periodic

(or quasi-periodic) condition of the trajectory, the map could also indicate whether

the orbit would be stable or unstable. This information may point out how “stable”

the orbit is: if the orbit returns to the same point every time, indicating a true

periodic orbit, or if the orbit returns to approximately the same position, with a

specific return pattern that may be available information on the map. A “less stable”
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trajectory may require more stationkeeping to keep the spacecraft on the chosen

orbit. Consequently, if a very small maneuver is made on a trajectory characterized

in this way, or a natural external disturbance slightly perturbs the spacecraft orbit,

the resulting trajectory may be radically different than the initial path. Though it is

not expanded upon in this investigation, this concept may be exploited to make more

unpredictable maneuvers between orbits and trajectories. This idea is suggested in

Section 5.5.

Looking at the same topic from the viewpoint of a mission designer, the periapsis

maps tell the designer a range of points where initializing a trajectory will produce

a desired outcome. The map would also help the mission planner narrow down the

choice for an initial condition by observing the stability information of the considered

points. This may help to design a trajectory that specifically exhibits chaotic, quasi-

periodic, or periodic motion while still giving the desired end behavior. The stability

information of the orbits may also help the decision by comparing stable orbits versus

unstable orbits with the desired behavior.

Although the periapsis Poincaré maps presented in this test case offer valuable

information, there are also some disadvantages to note. First, in order to use the

maps to predict an unknown spacecraft’s end behavior or orbit type, a periapse must

be observable. If very little information is known about the spacecraft trajectory

in question, periapse may not be useful at all. Just like the previous test case,

there are also limitations that come with using Poincaré maps in general. Each

map must correspond to one particular energy level, and only a selection of the

available trajectories in the region are used to generate the map. The long-term “end”

behaviors observed in each map also depend on the numerical integration time for

each trajectory. This is useful when a specified time is provided when computing the

map data, but if a chosen end behavior is needed at a different time than presented,

175



then the behavior observed from the map is not guaranteed for the new time.

Another potential drawback comes with defining all initially prograde trajectories

in the initial conditions. All periapse points on the maps in this investigation may have

either prograde or retrograde motion at subsequent periapses, but each initial periapse

(the initial condition) of all trajectories on the periapsis maps have initially prograde

motion. At every initial periapse point defined for each trajectory represented on the

map, there is also a solution that is moving initially retrograde, and the subsequent

periapse points for those trajectories are not shown. On one hand, this neglects

potentially different end behaviors from the same initial points, which would create

a denser, more detailed map and increase the number of characterized points in each

category, but this is also a design parameter specified in order to exactly define the

shown trajectories. Trajectories initially retrograde with respect to the Earth may

be added to the map, but there is no distinguishing characteristic that delineates

between initially retrograde or prograde trajectories.

Additionally, colors only correspond to the first departure point for the Earth

region and do not reflect information regarding the other behaviors of the trajectory

or the regions it visits during the integration time. A cyan-colored periapse point

may indicate that a trajectory departs the Earth-region close to 𝐿1, but this same

pathway may eventually lead to another libration point, or it may fly-by the Moon

once and return to the Earth region for rest of the time. More colors could have been

used to showcase other categories of end behaviors, allowing the map information to

be useful for more specific missions.

4.4 Chapter 4 Summary

In this chapter, three test cases showcase the numerical tools and unconventional

methods developed in the CR3BP environment. The trajectories and transfers in the
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test cases are not claimed to be optimal. Test Case I presents a “rescue” mission

that transfers a stranded satellite in a highly inclined geosynchronous transfer orbit

to an equatorial geosynchronous orbit with a design method that utilizes the natural

shape and motion of resonant orbits as patch points for a multiple-shooting method.

The converged design not only reaches mission objectives by overcoming a large incli-

nation change during transfer, but reveals a “figure-8” structure with similar orbital

characteristics as a resonant orbit. Numerous and convenient contingency plans are

available based on the use of this structure and the potential phasing opportunities,

increasing the “resilience” of this mission plan [12].

Test Case II uses a design process using a periapsis map to observe the transfer

opportunities from a “Tundra” orbit defined in the planar CR3BP (different than ac-

tual Tundra orbits with 63.4∘ inclination) to a “GEO” orbit in the same plane (with

different inclination and slightly smaller altitude than actual GEO). A tangent burn

is made to maneuver the spacecraft from the initial orbit to an unstable manifold tra-

jectory associated with an unstable periodic orbit about the 𝐿1 libration point. From

the unstable manifold, a “close intersection” is found at a periapse nearly intersecting

the periapse of a stable manifold trajectory associated with the same periodic orbit.

From the end point on the unstable manifold, a tangent maneuver is completed to

put the spacecraft onto a trajectory resembling that of the stable manifold, and a

final transfer is made to finalize the mission in a planar “GEO” orbit. Contingency

options are explored for this case that would increase the “resiliency” of the mission

design [12].

Test Case III uses periapsis Poincaré maps to characterize specific long-term “end”

behaviors for a range of orbits near the Earth and offer a method to employ “defensive

operations” and gain insight into an unknown spacecraft’s trajectory [12]. As energy

level changes, the structure of the maps evolve and trajectories exhibit different end
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conditions. The maps can be used to choose initial conditions coded to yield specific

behaviors. Predictions of future behaviors, trajectory structure, and orbital stability

may also be determined based on observed periapse guesses.
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5. Summary, Conclusions, and Future Work

In the present investigation, design processes using the tools and methods brought

about by modeling in a multi-body dynamical environment are presented and evalu-

ated. These processes begin by expanding the design space to observe the available

opportunities. For various scenarios, each solution comes with contingency plans that

also lend specific advantages.

5.1 Summary

The research in this study of military applications follows directly in line with

the Air Force decision step of “deciding,” helping a mission planner to examine a

vast space of design options as astrodynamical problems present themselves. Un-

conventional tools and methods in this analysis directly line up with goals listed in

Department of Defense documents, motivating study with advanced methods. Suc-

cess stories that have used multi-body dynamics to solve problems provide inspiration

for test cases, such as the AsiaSat-3/HGS-1 mission employing a lunar fly-by to com-

plete an inclination change between Earth orbits with less Δ𝑉 than conventional

methods. The two-body model may provide a decent first guess for the motion of

a satellite close to the Earth, but taking the gravitational field of the Moon into

account as well is often necessary for higher-altitude spacecraft trajectories. The cir-

cular restricted three-body problem lends itself to the design process. While no known

closed-form analytical solution to the CR3BP is available, the problem formulation in

the barycentric rotating frame offers an alternate view of possible solutions and their

utility to real-world problems. The Jacobi Constant, the CR3BP’s one known integral

of the motion, defines regions of accessible and inaccessible space and offers a valuable

constant for tracking error in the numerical tools used in this investigation. Special
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perturbations methods are applied to astrodynamics, continually opening doors to

sophisticated and computationally intensive methods that are gaining popularity as

technology allows. Numerical integration and Poincaré maps are used extensively in

this work to explore the solution space of specific test cases. Stability analysis of

equilibrium points and periodic orbits in the CR3BP leads to the computation of

invariant manifolds. These structures contain trajectories that offer unique and low-

Δ𝑉 transfers from one point in a CR3BP system to another. Periodic orbits, such

as resonant orbits, are used to generate invariant manifolds or to provide information

for an initial guess into a numerical program. Targeting methods and continuation

schemes are derived and implemented to search the design space for solutions to prob-

lems, finding answers to reach problem objectives while satisfying constraints. These

procedures are coupled with trajectories’ condition of periapsis with respect to the

Earth, allowing more robust algorithms to provide particular solutions.

Test Case I presents a “rescue” mission that transfers a stranded satellite in a

highly inclined geosynchronous transfer orbit to a geostationary orbit. The natural

pathway of the 4:3 periodic resonant orbit family is chosen to act as a guide to search

for a transfer solution. Pseudo-arclength continuation is used to generate members of

this family both in the plane of the primaries and out-of-plane. An individual orbit

was identified to give state information for patch-points to input into a multiple-

shooting targeting algorithm. A transfer solution is found that uses the Moon’s

gravity to transfer the spacecraft from the highly inclined GTO to a slightly inclined

“GEO” altitude orbit. With a combined plane change and circularization maneuver

performed at the final point, the total Δ𝑉 for this transfer is less than a two-body

combined plane change and circularization maneuver to GEO and comparable to

the “nominal solution” produced in the AsiaSat-3/HGS-1 analysis. Comparisons

are made between each method, and contingency solutions are explored that take
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advantage of the “figure-8” patterned structure of the transfer path and “phasing”

options due to its near-resonant behavior.

Test Case II uses periapsis Poincaré maps in the design process of transferring

from an orbit in the plane of the primaries in the CR3BP with “Tundra” altitudes

(with different inclination than real Tundra orbits) to another orbit in the same plane

with “GEO-like” altitude (with slightly smaller altitude and different inclination than

real GEO). A pathway is designed that departs with a tangent burn from apogee of

the “Tundra” orbit to an unstable invariant manifold emanating from an unstable

periodic orbit around the Earth-Moon 𝐿1 libration point that possess a periapse at

the transfer point. A small Δ𝑉 is then made at a periapse point on the unstable

manifold that is close to a periapse of a stable manifold associated with that same

unstable periodic orbit. This leads to a trajectory that resembles the stable manifold

trajectory associated with the nearby periapse. A final maneuver is made at the

path’s next periapse point to end up in a final “GEO” altitude orbit. Contingency

options are examined for this scenario, discussing the use of invariant manifolds as

transfer means to/from other destinations.

Test Case III examines periapsis maps catered to different applications. Long-

term “end” behaviors of trajectories are coded on the map, giving the observer the

structural and stability information of a Poincaré map, as well as identifying areas

of trajectories that impact a primary, depart the area, or are “bounded” for the

integration time associated with the map. The utility of these maps are evaluated

for predicting the future behavior based on the observed periapsis information of a

spacecraft and for choosing initial conditions based on a desired outcome.
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5.2 The Employment of Numerical Methods and Dynamical Systems

Theory Are Essential for Contemporary Mission Design

Developing and implementing the design processes in this research has led to

several conclusions concerning the efficacy of the presented tools for military applica-

tions. First, applying numerical integration, other numerical methods, and Dynam-

ical Systems Theory are essential to this research. Computing particular solutions,

converging iterative algorithms to target or continue specific classifications of orbits,

and generating esoterically defined maps are only a small subset of the capabilities

of numerical methods to assist in this type of design. Speaking to special perturba-

tions, Wiesel claims “this is almost certainly the future of orbital mechanics” [20].

Although the CR3BP allows more design options than the two-body problem, it is

still a highly-simplified model of the actual dynamics. Any solution computed in the

CR3BP would then become an initial guess to input into an ephemeris-based model

incorporating the gravitational fields from other celestial bodies (the Sun being the

next body to consider) and additional influences of the space environment capable

of modeling. Additionally, all solutions offered in this investigation do not determine

the “statistical Δ𝑉 ” for any of the transfers. It is important to look at the actual

cost of these designs, including the stationkeeping cost for following exactly along a

transfer trajectory. Though it is not the most accurate model, design using a CR3BP

does offer numerous advantages for preliminary design and potentially for military

applications. Employing concepts from Dynamical Systems Theory, including the

generation of Poincaré maps representing stable and unstable invariant manifolds,

as well as examining the structures that emerged from the maps, is instrumental in

designing low-Δ𝑉 missions and gaining insight into a trajectory’s long-term behavior.
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5.3 The Barycentric Rotating Frame Gives Significant Insight

Engineers are often told to “think outside the box.” Though cliché, examining

each problem in the rotating frame gives mission designers a clear avenue to do

just that. The rotating frame lets the observer see structure and characteristics

that are not readily noticeable in the inertial frame. The existence of the Jacobi

Constant; the observation of patterns, periodicity, and resonance; and the locations

of equilibrium points are all easily seen in the rotating frame and exploited in this

investigation. The first test case, involving a “rescue” mission similar to that of

AsiaSat-3/HGS-1, demonstrates the usefulness of the rotating frame. Of course, this

specific solution was created with a resonant orbit that was determined by already

studying the motion in the rotating frame, but examining a solution in the rotating

frame that was previously developed from an inertial perspective is useful in the

same way. The solution generated from a resonant arc has an unexpected path in

the inertial frame; the transfer arc from the GTO departs, almost appears as a large

2BP Hohmann transfer arc, visits around the Moon, and returns in a similar pattern.

The inertial frame tells the basic “rescue” story, but it leaves out possibly critical

information about the designed solution. When the trajectory is propagated longer

and put in the CR3BP, another facet of the story is revealed. In the rotating frame,

the trajectory is able to be analyzed by its specific patterns (like the “figure-8” pattern

observed in Test Case I, Section 4.1.2) and resonant-like qualities, which may make

it useful for other mission design scenarios.

Poincaré maps also give insight when examining a set of trajectories integrated

with the equations of motion developed in the rotating frame. The study of periodic

orbits and specific structural patterns characterizing stability can give the mission

planner significant insight into the problem. An initial guess can be chosen directly

from the Poincaré map and input into an automated computer algorithm to obtain
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a precise solution to a problem. Picking initial conditions for a stable periodic orbit,

as described in Section 2.16, is an example of how human observation/visual insight

can be used to start the process for finding a computer-generated solution converged

to a given tolerance. Periapsis points can also be examined by the mission designer

looking at specific scenario-driven altitudes, such as in Section 4.2. In this case,

instead of choosing an initial guess to put into a computer program that outputs a

solution, the state data from the map and the pattern of subsequent returns of the

examined points can give useful, direct information about where a specific orbit is at

its periapse point at a given altitude and what altitude it will be at when it reaches

its next periapse. In general, due to the definition of the periapsis condition, and the

resulting description of the concavity of a trajectory as seen from the Earth, a periapse

location will be a locally minimum altitude from the Earth. The periapse points also

represent where the spacecraft would be moving exactly tangent to the apogee (or

perigee) of a closed, near-Earth orbit at that altitude. These characteristics of the

points present the periapses as efficient locations for maneuvers to/from Earth orbits,

defined and easily shown on periapsis Poincaré maps.

In another application of Poincaré maps, described in Section 4.3, initial conditions

for a desired end behavior for a given time period can be easily picked from the

periapsis map, simply by selecting an initial condition in the corresponding region

to the desired behavior. Actual periapse points shown on the map may be chosen,

as well as other points in the region of interest that are not actually plotted on the

map. Using the same mentality of choosing periapses for transfer locations from Earth

orbits, initial conditions with the desired end behavior that are also at a desired Earth

orbit altitude may be chosen as convenient maneuver points from Earth orbit, into a

trajectory that gives a desired end behavior that is seemingly unpredictable from the

Earth-centered inertial frame observations. Human insight gained from examining
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solutions in the rotating frame (whether in the configuration space or on Poincaré

maps) is a useful advantage of modeling and using the tools available in the CR3BP.

5.4 Specific Solutions Originate from a Vast Collection of Mission Op-

tions with Map-Based Design

While studying Poincaré maps is useful for mission design in general, they also

provide an expansive solution set to work from, while at the same time displaying spe-

cific information. Poincaré maps are a tool that can be extremely useful for problems

that can benefit from observing trajectories at a specific 𝐽𝐶 and for a set integration

time. There are many ways to define a Poincaré map, and there may be many ways

to present the same, or slightly different, information relating to each scenario. One

utility of using maps is seeing an abundance of information about a large selection of

trajectories at a specific energy level at one time, hopefully gaining an overall picture

of what is going on in the region observed. The second and third test cases show how

periapsis maps examined for the Earth-region (rather than within the vicinity of 𝑃2

commonly seen in other research [30,53,73,75,76,77]) can be useful for mission design

by using a map to design a mission from a planar “Tundra” orbit to a planar “GEO”

(Test Case II) and by observing long-term behaviors of spacecraft trajectories (Test

Case III). Obvious from the design process with the periapsis maps, it is possible to

observe copious potential mission paths for each scenario. The periapsis maps may be

defined with different variables to cater to a specific scenario’s requirements: surface

of section, unique or ambiguous initial conditions for trajectories represented on the

map, number of trajectories represented, invariant manifolds of the same or many

periodic orbits, integration time, energy level, overlaid maps at different energy lev-

els, etc. Since individual scenarios are examined in each test case, gaining an overall

knowledge of the related, or physically nearby, solutions is useful for problems with
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less stringent constraints or for exploring unconventional options. For this reason,

there is also importance in exploring and developing contingency plans in order to

gain more insight into the available options. Overall, there is no general process for

map-based mission design, and each Poincaré map is mission-dependent. The level of

efficacy for a Poincaré map may rely on how clever the map designer is in generating

the display for a specific problem, which is useful for facilitating simpler observations

of the map, but may lead to accidentally neglecting pertinent information.

5.5 Recommendations for Future Work

The more work that was completed in effort to fully scrutinize the models, tools,

algorithms, and test cases in this research, the more scenarios and ideas emerged

that leave work to be explored. Recommendations for extending the analyses and

numerical experiments of this work in contribution to the field include the following:

∙ Implement map design for more practical orbit transfer scenarios.

Perhaps the most impractical details of this investigation were seen in

the full transfer design in Section 4.2, managing the transfer between two Earth

orbits that happen to both lie in the plane of the primaries, as well as the planar

periapsis map applications used for design from “Tundra” to “GEO” orbits

(which are defined differently than real Tundra and GEO orbits) in Section

4.3. Of course, there could be some operational advantage of these orbits, and

the Moon’s inclination with respect to Earth’s equatorial plane changes from

about 18.29∘ to 28.59∘, so it may actually be realistic to assume an initial orbit

has an inclination equal to the higher end of the range (nearly equal to the

latitude of Cape Canaveral) [83,84]. However, completing a full transfer design

in this plane may only be useful for a small assortment of missions. Designing

missions through a similar process may then be appropriate, albeit challenging,
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for the spatial CR3BP. Poincaré map design for the spatial problem adds two

dimensions to consider (requiring 4-D maps), which adds complexity both by

the task of describing four dimensions on a map (difficult to visualize) and

adding more variables to define for specific maps (as discussed in Section 5.4).

∙ Study the specific stability characteristics seen on periapsis Poincaré maps.

Stability information foretold by the specific structured regions of a map

were not explicitly studied on the periapsis maps in this investigation, though

the maps studied did contain a variety of stability information. Specifically,

close to the Earth, quasiperiodic and periodic orbits with multiple returns to

the periapsis map were observed, possibly indicating different resonant orbits.

Figure 54 shows just a few examples of the structures observed in the periapsis

maps of this investigation that may be studied further.
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Moon 

“Forbidden Region” 

Regions of  
No plotted periapses 

Possible stable periodic resonant orbit 
(with 7 returns to the map) 

Possible unstable 
 periodic orbits 

(a) (b) 

Figure 54. Earth-Moon Periapsis Poincaré Map Showing Possible Structure (a)
Barycentric Rotating Frame (b) Zoomed View of Barycentric Rotating Frame (𝐽𝐶 =
3.17, Integration Time = 15 Revolutions of the Primaries), Cyan=Trajectories
Departing 𝐿1 “Gateway,” Green=Trajectories “Bounded” for Integration Time,
Blue=Trajectories that Impact Earth.

Figure 54 (a) shows regions where periapses are not observed, and (b) shows

possible initial guesses for stable and unstable periodic orbits in the Earth-Moon

system at 𝐽𝐶 = 3.17. The blank spaces in Figure 54 (a) represent regions where

no returns to the map are plotted for the trajectories represented on the map,

but in general, periapses are possible in these regions. Apoapses would occur in

the region surrounding the periapses that are plotted, just inside the “interior”

ZVC boundary. It would be interesting to study and classify the types of initial

conditions that return to specific regions.

Small changes that lead to radically different behavior can also be more

readily recognized when looking at the problem in a different formulation. Chaos

is characterized by a results’ sensitivity to the initial conditions, and in general,
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chaotic behavior is exhibited in the CR3BP. One way these differences in be-

havior may be observed is by Poincaré maps. The chaotic regions seen on the

maps (seemingly random “seas” of points, as explained in Section 2.16) and

this information may be used to either avoid or exploit these regions based on

the goals of the mission. The structures observed and the possibility of chaotic

trajectories could also aid in predicting an unknown spacecraft’s future where-

abouts. A visual analysis of the structure on the map may tell how a small

perturbation or a small yet deliberate maneuver may send the spacecraft into

an orbit that does not resemble its original trajectory in the slightest. This in-

formation may also indicate to the mission planner that stationkeeping should

be a more significant concern when planning to remain on a chosen unstable

periodic orbit. Conversely, these structural indications may lead to choosing a

stable orbit so that a spacecraft may naturally require less stationkeeping.

This structure analysis also coincides with predicting the “end behavior”

seen in Test Case III (Section 4.3). If the prediction for a specific spacecraft tra-

jectory is inaccurate, there is an associated expectation of how stable the actual

trajectory may be based on its approximate location on the map. There are

multiple coded “end behavior” colors seen in the structured regions on the map,

so multiple behaviors are observed for trajectories of various stability charac-

terizations. These combinations may lead to additional indications (or simply

verification) of what kind of behavior the unknown spacecraft’s trajectory might

exhibit.

∙ Explore the evolution of apses on families of periodic orbits.

While periapsis criteria imbedded in the continuation scheme used in this

research offered utility for specific purposes, this led to difficulties when trying

to find a large collection of resonant orbits in families. The inclusion of these
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points may be necessary for convergence, but experimentation with numbers of

patch points, or the selection of which points to use, may give a more efficient

process for finding more complete families. Exploring the specific evolution of

apse points along resonant orbit (or other) families (as energy level increases

or decreases) may reveal interesting information. Periapsis as well as apoapsis

information may be recorded separately on a periapsis Poincaré map for a se-

lection of members in a single family. The subsequent returns can be numbered

and examined, comparing each numbered return of each family. This can be

done to see if apses ever “disappear” from an orbit family, or if apoapses turn

to periapses and vice versa. This information can be applied to a periapse point

chosen for maneuvering. If this periapse point belongs to a family of orbits, and

periapse points for other members in the same family stay close, then this point

may be available as a maneuver location for many energy levels and may place

a spacecraft on trajectories of similar behavior (or at least resonance), since

members of resonant orbit families share specific characteristics. This may lead

to the discovery of maneuvering points on/off a resonant orbit that are available

at many energy levels.

∙ Generate a wide variety of Poincaré maps with a more efficient computing system.

Exploring periapsis Poincaré maps with different energy levels, integration

times, and “end” condition criteria was mentioned. The generation of many

plots with MATLAB R○ would be impractical for producing data in a timely

manner [22] and maintaining an integration tolerance of 10−12 nondimensional

units (with trajectory data at sub-cm and sub-cm/s precision for position and

velocity data, respectively). A more efficient computing program is recom-

mended for creating many detailed Poincaré maps. Creating more maps would

make observability of the evolving structure and stability dynamics easier to
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see, as well as create more opportunities for analysis.

∙ Explore more contingency options for solutions computed in the rotating frame.

There may be a plethora of contingency options for the “figure-8” orbit

in Test Case I (Section 4.1.1) as well as for orbits and trajectories with similar

patterned behavior. The boundedness of maximum orbit altitude and the return

inclination at each approximate returning point for the solution in the test case

may have a relationship to be exploited. Osculating elements may be interesting

to compare between subsequent returns of the spacecraft as it completes each

“orbit,” and general patterns may exist for trajectories of similar type.

Expanding the discussion of utilizing contingency operations for the pur-

pose of protecting military assets in space, particular interest may be found in

unusually shaped “holding” or “parking” orbits. These “parking orbits” may

simply be in a GEO, a “GEO-like” orbit, or they may take advantage of more

unconventional structure observed in the rotating frame that is seemingly ran-

dom or just uninteresting in the inertial frame. Perhaps a resonant orbit may

serve as an example. Exploring the different structures in the rotating frame

may present a resonant orbit or other structured trajectory that would be use-

ful. Replacing space assets, should something happen, is both expensive and

takes a considerable amount of time to get from the ground to space. Addi-

tional spacecraft could be placed in the “parking orbit” to wait. This “parking

orbit” may hold a spacecraft waiting for the appropriate opportunity to insert

into mission orbit should one satellite in a mission constellation malfunction

or reach its end-of-life. Or, a spacecraft in this unusual “parking orbit” may

simply be applying the “phasing” concepts discussed in Section 4.1.1 in order to

seize the calculated opportunity to insert into a particular orbit. A spacecraft

in one of these orbits may remain there until it is given a mission task and
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is reconstituted. Depending on orbit shape and structure, a spacecraft in the

“parking orbit” may be able to transfer to a variety of mission orbits in a timely

manner. Additionally, a seemingly unimportant shape in the inertial frame may

allow these transfer opportunities to be completed without being obvious to an

observer. The cost effectiveness of these “parking orbits,” as well as the benefits

from undetectability/unpredictability may be assessed.

∙ Expand the observed “end” behaviors for predictability analysis using periapsis

Poincaré maps.

A specific scenario applying the prediction analysis described in Test Case

III (Section 4.3.1) would bring about particular long-term “end” behavior to ex-

plore. Similar maps reflecting these (possibly numerous) behaviors would divide

and categorize the map further to aid in mission design and predicting motion.

Additional “end” behaviors may include involving trajectories departing the

Earth’s vicinity “ahead of” or “behind” the Moon (with initial departure coor-

dinates above or below 𝑦 = 0, respectively). Another idea would be to plot the

same behaviors in this analysis, but with different indicators that correspond

to different integration times.

To quote Szebehely, “Sir Isaac established the rules, Poincaré presented the chal-

lenges” [91]. While current tools and technologies are sufficient to conduct space oper-

ations, the next level of designing space missions comes with the advanced techniques

that attempt to tackle these “challenges” described by Szebehely. The practices seen

in this research have particular use for the military, leading to a more comprehensive

understanding of Earth’s environment and its available spacecraft trajectories, both

near and far. Implementing advanced dynamical methods is necessary for improving

the current astrodynamical analyses used for military applications in space.
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74. M. Hénon, “Numerical Exploration of the Restricted Three-Body Problem,” The
Theory of Orbits in the Solar System and in Stellar Systems, pp. 157–169, 1964.

75. B. F. Villac and D. J. Scheeres, “On the Concept of Periapsis in Hills Problem,”
Celestial Mechanics and Dynamical Astronomy, vol. 90, no. January 2016, pp.
165–178, 2004.

76. B. F. Villac and D. J. Scheeres, “Escaping Trajectories in the Hill Three-Body,”
Journal of Guidance,Control, and Dynamics, vol. 26, no. 2, pp. 224–232, 2003.

77. M. Paskowitz and D. Scheeres, “Robust Capture and Transfer Trajectories
for Planetary Satellite Orbiters,” Journal of Guidance,Control, and Dynamics,
vol. 29, no. 2, pp. 342–353, 2006.

78. A. F. Haapala and K. C. Howell, “Representations of Higher-Dimensional
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